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INTRODUCTION

ANALYTICAL TOOLS USING SAS

Statistics plays an essential role in program evaluation. The application of statistical
techniques and methods often increases the effectiveness of inspections and the
impact of results. In a time of budget constraints, effective sampling and appropriate
application of statistical techniques can save considerable inspection costs, while
preserving the validity of study findings.

This handbook was prepared to provide guidance on how to use common statistical
techniques. Although there are many statistical applications on the market, this
volume focuses on only one of these applications - Statistical Analysis Software
(SAS). SAS is an exceptionally powerful statistical and database manipulation
program which is used by many Office of Evaluation and Inspections (OEI) staff,
including the Technical Support Staff (TSS). SAS is available for use on the PC
(windows version) or on the Health Care Financing Administration’s (HCFA)
mainframe.

The manual is divided into two Parts and nine chapters. Part I deals with the
application of statistical procedures and testing. Part II deals primarily with
identifying ways of gathering data about Medicare payments, methods for
summarizing this data, and selecting samples. Each of the chapters include an
introduction of why and when we use a particular type of analysis. Also included
are examples from actual inspections which utilized the described procedure, as well
as, the applicable SAS code used to get the desired output. The chapters end with an
explanation of the output produced by the code and how it is used in a report.

Part I - Statistical Procedures

Chapters 1-6 deal with SAS procedures for data analysis, estimation, and hypotheses
testing. Chapter 1 deals with looking at the data before the inspection begins to see
how it is distributed. Knowing this information can help a great deal when
designing the sample and defining the population. Chapter 2 describes the process
for editing, coding, and tabulating survey responses in preparation for analysis.
Chapter 3 explains the formula and SAS code for computing confidence intervals for
means and totals. Chapter 4 explains the Chi-Square test for determining the
relationship between two categorical variables. Chapter 5 describes how to test for
differences between two continuous variables using the t-test. Finally, Chapter 6
concludes with a description of the statistical analysis process called regression,
where a formula is developed to predict a dependent variable using one or more



independent variables.

Part II - Data Manipulation and Sampling

Chapters 7, 8, and 9 deal with computations and data gathering at the beginning of
the inspection process. First, Chapter 7 discusses a method for selecting a random
sample from a data file. Next, Chapter 8 reviews the procedure for obtaining a
complete billing history for a Medicare beneficiary. Although we may be studying
only one aspect of Medicare billing (e.g., emergency transport), it is often valuable to
review these services in light of all the other services received by the beneficiary.
Finally, Chapter 9 concludes Part II with an explanation of how to get information
about a particular Medicare procedure code that may be of interest in an inspection.

Appendix Material and Glossary
Appendix A provides an overview of basic statistical concepts, while Appendix B

illustrates how to calculate a confidence interval using SAS Windows ASSIST.
Applicable statistical terms are provided in the glossary.



PART |

STATISTICAL PROCEDURES




CHAPTER 1

FXPLORING DATA USING PROC UNIVARIATE

Analysis Question: How do I determine what my data looks like?

ABSTRACT

Before starting an inspection, it is often necessary to anticipate the distribution of the
data you expect to get in your sample. By exploring the distribution of a prior
sample, or such things as the one percent National Claims History file, you can
determine whether you expect your data to be normally distributed, what the mean,
median, and standard deviation of the data will be, or if outliers are expected.
Answering these questions at the design phase of the study will help assure the highest
quality sample. This chapter highlights how key descriptive statistics are obtained
using PROC UNIVARIATE in SAS and what each statistic means.

Introduction

At the pre-inspection phase of our studies, knowing something about our data can be
very useful. It can make a big difference in the quality and efficiency of our samples.
One of the more common uses of this information is when we are trying to
determine dollar amounts of unnecessary services for a particular HCPCS. Some
common questions relative to the distribution of the data are:

1) Are the data normally distributed?
2) What are the mean, median and standard deviation of the data?
3) Are there any outliers in the data?

All of these questions and many more can be answered through the use of a SAS
procedure called PROC UNIVARIATE. PROC UNIVARIATE is used when we
are analyzing continuous variables such as allowed dollar amount or beneficiary age.
The SAS code used for this procedure is very simple.

An example of the application of a PROC UNIVARIATE is given below. Although
this example was taken from sample data from a previous inspection on Mental
Health Services (OEI-02-92-00860), we usually run this procedure on the one percent
National Claims History file prior to selecting the sample.

CHAPTER 1 FXPLORING DATA USING PROC UNIVARIATE Page 1



The variable used in the example to follow is called TOTALLW. TOTALLW is the
amount allowed by Medicare for a beneficiary for services in the mental health area.
The HCPCS services concerning us included: psychiatric diagnostic interview
(90801); psychological testing with written report (90830); individual psychotherapy,
20 to 30 minutes (90843); individual psychotherapy, 40 to 50 minutes (90844); and
group psychotherapy (90853) provided in a nursing home. The SAS code used to
produce this output was:

| sAs cope |

PROC UNIVARIATE DATA =BRT.MHALL;
VAR TOTLALLW;
RUN;

| END SAS CODE ||

The first line of code tells SAS to invoke the UNIVARIATE procedure on the dataset
named brt.mhall. The second line (VAR TOTALLW) tells SAS the continuous
variable on this dataset we would like to know about. If the VAR statement is not
included, SAS will produce statistics on every variable in the dataset. Be sure to
include this statement, if you are only interested in one or two variables in your
dataset. The RUN statement is only used in PC SAS. It is not needed if you are
running SAS on the mainframe. This code produced the following output:
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“MOMENTS” PORTION of PROC UNIVARIATE OUTPUT

Variable=TOTALLW
N 540 Sum
Wgts 540
Mean 559.56674 Sum
302161
Std Dev 766.9173 Variance
588162.1
Skewness 3.316512 Kurtosis
17.05421
USS 4.861E8 CSS
3.1702E8
CcVv 137.0578 Std Mean
33.00286
T:Mean=0 16.95481 Prob> |T|
0.0001
Sgn Rank 73035 Prob> | S|
0.0001
Num *= 0 540
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The following Table provides definitions for the “Moments” section (output)

1. N - the number of nonmissing observations -in this example we have 540 observations
(beneficiaries) in our dataset

2. Sum Wgts - the sum of the weights of these observations. In this example it is equal to
540 since no weights were used.

3. Mean - the average

4. Std Dev - the standard deviation, commonly seen as the greek letter sigma (o).

5. Variance - the standard deviation squared (¢°).

6. Skewnesss - the lack of symmetry in a distribution. It is equal to zero for a symmetrical
distribution. A distribution is said to have positive skewness (or be positively skewed)
when it has a long thin tail at the right. In this example a value of 3.15512 indicates that
this data is positively skewed. In contrast, a value which is negative indicates that the
distribution has a long thin tail at the left.

7. Kurtosis - the relative peakedness or flatness of a distribution. In this example the value
of 17.05421 indicates that the distribution has wider tails than the normal distribution.
If this value had been less than three, the distribution would be less peaked and have
narrower tails than the normal distribution.

8. USS - the uncorrected sum of squares. This is calculated by squaring each individual
value, and summing these values. In the example above the USS is equal to 4.861ES.
The E8 on the end means that you need to multiply the 4.861 by 100,000,000

9. CSS - the corrected sum of squares. This is calculated using the following formula:
USS-(Mean * Sum).

10. CV - the coefficient of variation. It is computed by dividing the standard deviation by
the mean and is expressed as a percent. In the above example, it is 766.9173/559.5574 or
137.06 percent. This is an indication that the data is extremely variable. The smaller the
value of the CV, the less variability in the data.

11. Std. Mean - the standard error of the mean. This is computed by dividing the standard
deviation by the square root of N.

12. T:Mean=0 - the Student's t value for testing the hypothesis that the population mean is
0.

13. Prob > |t| - the probability of a greater absolute value for this t value.

14. Sgn Rank - the signed rank statistic also known as the Wilcoxon Test. The absolute
value of the differences between paired observations are ranked. This is an alternative to
the paired sample t-test.

15. Prob > |s| - the probability of a greater absolute value for this s value.

16. Num *=0- The number of observations not equal to 0. In this example all 540 values
are greater than 0.

UNIVARIATE PROCEDURE
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The Quantiles portion of the output
gives the maximum value in the file
(100% Max), the minimum value in the
file (0% Min), and also the 75th, 50th, and
25th percentiles. In this example, we can
see that the largest value is 7567 and the
smallest is 18. The median, or 50%
percentile, is 268 meaning that one-half of
the values are above 268 and the other
half are below 268.

The right-hand column of this output
shows other interesting information such
as the 99", 95", etc. percentiles. This
column is very useful in identifying
outliers on the file. For example, since
only 5 percent (about 27) of the values are
over 2190 (the 95™ percentile), we may
want to look at all of these beneficiary

QUANTILES

Max 756
100% Q3 683
Med 5
75% Q1 268
Min 119
50% 5
18
25% Range
Q3-
0% Q1
Mode 754
564
146

Variable=TOTALLW

7 99%

. 95%
90%
10%

. 5%
1%

9

3302
2190.

1429.
70.5

47.5
35

records, if this were our universe. Also shown in the Quantiles portion of the output
are the range (7567-18), the interquartile range (Q3-Q1), which is equal to 683.5-119.5
in the above example, and the mode of 146 (the most frequently occurring value on

the file).

Finally, the Extremes portion of EXTREMES

the output shows the five highest

and five lowest values in our Lowest Obs Highest

dataset. The two columns labeled Obs

"Obs" are the observation numbers

of the values to the left. 18 (194) 3470
(311)
28 {(426) 3b86
(147)
29 { 19) 3779
(289)
31 { 55) 4807
(511)
33 {(114) 7567
(414)
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OPTIONS IN PROC UNIVARIATE

Among the options in PROC UNIVARIATE is the option to see graphs of your
data. The code for this option is:

| sas cope |

PROC UNIVARIATE DATA =BRT.MHALL PLOT;
VAR TOTALLW;
RUN;

| END SAS CODE ||

The PLOT option in the PROC UNIVARIATE statement produces a "stem and leaf”
plot, a box plot, and a normal probability plot. The purpose of using the PLOT
option is to provide a clear picture of what your data looks like. Outliers in your data
become easy to see, and the distribution of the data is also very informative.

Other PROC UNIVARIATE options include (but are not limited to) a NOPRINT
option which is used when the only purpose of the procedure is to create new data
sets; a FREQ option which requests a frequency table consisting of the variable
values, frequencies, percentages, and cumulative percentages; and a NORMAL option
which computes a test statistic for the hypothesis that the input data come from a
normal distribution.

Two other useful statements used in connection with the PROC UNIVARIATE are
VAR and BY statements. The VAR statement specifies the variables on the file for
which descriptive measures are calculated. If this statement is omitted, all numeric
variables in the file will be analyzed. A BY statement is used when a separate analysis
by groups is desired. When using the BY statement, it is expected that the input data
set is sorted in order of the BY variables.
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CHAPTER 2

FDITING, CODING, AND TABULATING SURVEY RESPONSES

Analysis Question: How do I determine how people responded to
my survey questions using SAS?

ABSTRACT

After collecting data during an inspection, analysis of the data requires numerous
steps. These steps include: editing questionnaires for inconsistent answers, coding
individual responses to variables, determining the number of respondents for each
question, and producing frequency distributions and cross-tabulation tables. This
chapter is based on a standardized system of preparing data for analysis and
producing frequency distributions and cross tabulations, all of which are an essential
part of the inspection process.

Introduction

One of the basic things we do in OEI is conduct surveys of government officials,
beneficiaries, health care professionals, and many other groups to obtain data on the
programs and policies we are evaluating. To do this, we use mail questionnaires,
telephone interviews, as well as other means to collect data in a focused and
systematic way.

After collecting data, we should ask "How did respondents answer the survey
questions?”" To obtain the answer, we need to 1) edit questionnaires, 2) code
individual responses, 3) determine the number of respondents (n) for each question,
and 4) produce frequency distributions and cross-tabs. Coding of responses is usually
done by hand. The first step, editing, can be done either in SAS, using a series of
conditional statements, or by performing manual corrections and edits. The last
three items are easily and quickly accomplished by using both the PROC FREQ or
ARRAY statements in SAS. To illustrate these different steps, we will use an
example from a recent OEI report entitled "HMO Customer Satisfaction Surveys."
This inspection assessed how Medicare health maintenance organizations (HMOs)
conducted customer satisfaction surveys. We used a stratified random sample of 95
HMO Medicare contracts, with the HMO contracts stratified into three groups of
high, medium, and low Medicare enrollment.
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Each of these HMOs were sent a mail questionnaire regarding customer satisfaction
survey procedures and use of survey results. Seventy-two of the 95 sample HMOs
returned completed questionnaires.

EDITING

Once survey instruments are returned by respondents, regardless of the type of guide
(i.e., mail or telephone), each guide needs to be checked to ensure all answers provided
are logically possible. For example, a respondent might have answered "no" to a
question about whether they had ever conducted any customer satisfaction surveys,
but "yes" to a question about whether they had ever conducted a customer satisfaction
survey of only their Medicare enrollees. The logic inconsistency between these two
responses requires the analyst to use his or her best judgement to edit the survey
instrument. Otherwise, the respondent’s answers should be excluded from the
analysis of that question. Only if it is obvious that the respondent misread an earlier
question, should answers be changed. Editing or excluding inconsistent answers is an
important first step in analyzing respondent data and will help to prevent problems
later in the analysis.

CODING

After surveys have been edited, as needed, coding for data entry can begin. Coding is
the practice of assigning a unique code to each individual response. While codes can
be any symbol or group of symbols, we have found it easiest to use individual letters
or numbers, especially if the codes must be entered into a computer program. When
SUDAAN (Survey Data Analysis software package) is going to be used for the
analysis, variables in your dataset must be coded numerically.

It is a good idea to assign codes that are consistent throughout the survey instrument;
for example, the response "yes" could always be coded as 1, and "no" could be 2. This
makes entering the data into the computer quicker and easier. Consistent codes
should also be used for other situations, such as when a question should have been
answered by a respondent but was not (i.e. "no response,” coded as 9), or when a
question does not apply to that respondent (i.e. "not applicable," coded as 8). Making
this distinction helps you analyze each question’s response rate and helps you
determine whether low response rates for certain questions resulted from respondents
being ineligible to answer the question or choosing not to answer the question.

After you have analyzed response patterns, “no response” and “not applicable”
responses for each question will be recoded as missing values using a short SAS
program. This will prevent counting these responses in the denominator of total
responses for each question.
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DIFFERENT n

Different questions within the same survey instrument will often have different
numbers of respondents (n). This is usually because there are some questions that
respondents should have answered but did not, and because some questions did not
apply to all respondents.

FREQUENCY DISTRIBUTIONS

Once editing, coding, and data entry are completed, it is important to "clean" your
dataset by looking for and correcting data entry errors. Then it is possible to produce
frequency distributions (a form of univariate analysis) by examining the distribution
of survey responses on one variable (or survey question) at a time. In other words,
frequency tables show us how many respondents gave each possible answer to each
survey question.

CROSS TABULATIONS

The analysis for this inspection also involved doing cross-tabulations (usually
involving two variables). This is an examination of the distribution of survey
responses on two or more variables (or survey questions) simultaneously. In other
words, we want to know how many respondents who answered one question one
way also answered another question in a certain way. In the HMO study, we wanted
to know how many of the HMOs that did not conduct Medicare-only surveys also
did not include Medicare specific questions on their general surveys. Therefore, we
cross-tabulated Question 18 (in this example, whether or not the HMO conducted
Medicare only surveys) against Question 39 (whether or not they included Medicare
specific questions on their general surveys). A combination of negative responses to
both questions enabled us to determine how many HMOs did not obtain specific data
about the Medicare population they were serving.

WEIGHTS

Weights are used if a complex sample design is used, but not necessary for designs
using simple random sampling. Weights account for differing probabilities of the
sampling units selected. Since the HMO study used a stratified random sample, it was
necessary to weight the data when running frequency distributions and cross-
tabulations.

Each of the three HMO sample strata (high, medium and low Medicare enrollment)
were given a weight. Individual survey responses from each HMO were weighted by
the value given the stratum from which they were selected. For example, HMOs in
the high enrollment stratum were sampled at a disproportionately higher rate than
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those in the medium and low strata. Thus, in order to avoid giving a respondent from
a high stratum HMO an undue influence on the survey findings, his or her responses
were given a lower weight relative to those of respondents from the medium and low
strata HMO:s.

To compute values of the weight variable that will be added to your SAS dataset, you

divide the universe of HMOs in each strata by the number of HMOs sampled in that
strata.

COMPUTATION OF STRATA WEIGHTS

Universe / Sample = Weight

Strata 1 13 13 1.0
Strata 2 130 70 1.857
Strata 3 42 12 3.5
Total 185 95

Full Sample Weights

RESPONDENTS BY STRATA

These weights are computed on the
basis of how the sample was selected, Sample x Weight = Responding
not on how many responded. Universe
Strata 1 13x10 =13
. . Strata 2 94 x 1.9 =103
Partial Sample Weights Strata 3 5435 - 18
If less than 100 percent respond to Total 134
your survey, the weighted frequencies
obtained in SAS will be less than the

population. In this example, the
respondents by strata were the following:
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ANALYSIS

The following SAS program converts a database file to SAS, recodes variables, assigns
values to the weight variable, and performs a PROC FREQ for analyzing data from
the HMO study.

| sas cope |

1 FILENAME IN 'A:HMO.DBF';

2 PROC DBF DB3=IN OUT =HMODATA;
3 DATA HMODATAT1;

4 SET HMODATA;

) ARRAY NUM NUMERIC ;

6 DO OVER NUM;

7 IF NUM="'8" THEN NUM =.;

8 END;

9 IF STRATUM = '"1' THEN WT = 1.0;
10 IF STRATUM = '2' THEN WT = 1.857;
11 IF STRATUM = '3' THEN WT = 3.5;
12 PROC FREQ DATA=HMODATAT1;

13 TABLES Q18 Q18*Q39;

14 WEIGHT WT;

15 RUN;

| END SAS CODE ||

Program Explanation

Lines 1 -2. CONVERTING A DBASE FILE TO A SAS FILE. In line 1, you are

telling SAS to retrieve a dBase file called "hmo" from your a: drive. Line 2 converts
this database file into a SAS dataset called "hmodata."

Lines 3 - 4. CREATING ANOTHER SAS DATASET. In line 3, tells SAS that the
name of your dataset will be called "hmodatal." Line 4 tells SAS that you want to
create your dataset from an existing SAS dataset called "hmodata."

Lines 5 - 8. USING AN ARRAY AND DO LOOP TO ELIMINATE 8s. In line 5
SAS assigns an array called NUM (you can call the array anything you want). The
command NUMERIC is what tells SAS to use all numeric variables. Lines 6 and 7
tell SAS to perform a do loop in which zeros should be converted to missing values
using an IF THEN statement. SAS represents missing values with a period. These
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missing values will then not be counted in the denominator. You end the do loop
with the command "end" in line 8.

Lines 9 - 11. CREATING A WEIGHT VARIABLE. Lines9 - 11 use an IF THEN
statement to create the variable WT and assign weight values to the three strata.

Lines 12 - 15. COMPUTING FREQUENCY DISTRIBUTIONS AND CROSS-
TABULATIONS. Line 12 tells SAS to run the frequency procedure for the
hmodatal dataset. Line 13 tells SAS to produce a frequency distribution on question
18 and a cross-tabulation on questions 18 and 39. When you do a cross-tabulation in
SAS, you list the variable representing the row data first and the column data second
(e.g., Q18*Q39). The WEIGHT command in line 14 invokes the weights you've
assigned in lines 9 - 11. The PROC FREQ procedure ends on line 15 with a RUN
statement.

OUTPUT
The “Frequency” column displays the weighted number of HMOs answering YES or

NO to Q18, whether they have ever conducted a customer satisfaction survey of
Medicare enrollees only.

FREQUENCY DISTRIBUTION

Cumulative Cumulative
Q18 Frequency Percent Frequency
Percent
YES 17.68 46.0 17.68 46.0
NO 20.78 54.0 38.46 100.0

The “Percent” column shows the weighted percentage of HMOs that responded YES
or NO. The “Cumulative Frequency” column shows the cumulative weighted
number of HMOs responding YES or NO.

The responses to Q18 (whether or not the HMO conducted Medicare only surveys)
are represented in the rows of the crosstab table on the next page. The responses to
Q39 (whether or not the HMO included Medicare specific questions on their general
surveys) are found in the columns of this same table. There are four rows in each cell,
representing weighted frequency count, percent, row percent and column percent.
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As you can see in the first row, only 3 (rounded down from 3.17) HMOs said YES to
both questions 18 and 39 while 15 (rounded up form 14.51) said YES to question 18
but NO to question 39. Keep in mind that weights were computed to three decimal
places, therefore the weighted frequencies are not in the form of integers.

The second row of the cell for YES to both questions is 8.24 percent. This is equal to
the frequency of 3.17 divided by the total for the table of 38.46. The third row is the
row percent, 17.93 percent (the result of dividing 3.17, the cell frequency, by 17.68,
the row total * 100). Finally, the fourth number in the first cell of 81.91 percent, is
the column percent. This is calculated by dividing the cell frequency 3.17 by the
column total 3.87 and multiplying by 100. It is obvious from this table that not
everyone answered both questions 18 and 39 (by the weighted totals of 38.46, which is
considerably less than the responding universe of HMOs (N =134).

The PROC FREQ also has an option to compute a Chi-Square statistic. Refer to
Chapter 4 for additional information about this statistic.

CROSS-TABULATION

Frequency
Percent Q39
Row Pct
Col Pct
YES NO TOTAL
YES 3.17 14.51 17.68
8.24 37.73 45.97
17.93 82.07
81.91 41.95
Q18
NO 0.70 20.08 20.78
1.82 52.21 54.03
3.37 96.63
18.09 58.06
TOTAL 3.87 34.59
38.46
10.06 89.94 100.00
Frequency missing = 1.4
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CHAPTER 3

CALCULATING CONFIDENCE INTERVALS

Analysis Question: Having analyzed data from a sample, how do I
determine within what range the true population
value lies?

ABSTRACT

Once we have analyzed data from a sample, we often need to determine how precise
our estimates are. This information can be critical in understanding the significance
of point estimates and making policy decisions. The confidence interval is
determined by such factors as data variability, sample size, and how confident we
want to be that the true population parameter lies within the interval. This chapter
discusses the underlying theory of confidence intervals and shows how SAS can be
used to calculate the confidence interval for the mean and explains how these results
can be used to calculate the confidence interval for a total.

Introduction

In our reports, we typically use two types of estimates for population parameters.

The first, called a point estimate, estimates a population parameter using a single
sample statistic. The other estimation, called interval estimation, involves the
calculation of confidence intervals. In each type of estimation, we are trying to
answer the question, “What is the value of a population parameter?” When point
estimation is used, the form of the answer is, “I don’t know for sure, but my best
guess is (the value calculated from the sample).” When interval estimation is used, the
form of the answer is something like, “I don’t know the exact answer, but I'm 95
percent confident that the true value falls within the following range” or “I don’t
know the exact answer, but there is a probability of 95 percent that the true value falls
within the following range.”

Confidence intervals are important because they give the reader an idea of the
precision of the estimates. For example, there is a big difference between stating the
estimated amount of allowed payments for unnecessary services at the 95 percent
confidence level is $10 million +/- $1 million and the estimated amount of $10
million +/- $5 million. The first confidence interval is much more precise since the
range is $2 million versus a range of $10 million with the second confidence interval.
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The purpose of this section is to describe the method for calculating confidence
intervals. For this chapter, we will limit the discussion to confidence intervals
calculated for means and totals. However, the theory described can be utilized for
other types of estimates (e.g., proportions). We will show how SAS can be used to
make these calculations. (If SAS is unavailable, Audit’s RATSTAT program can
generate confidence intervals - see program documentation). However, before we
discuss the application of these programs, we will first describe the underlying
concepts utilized in calculating confidence intervals.

THEORY UNDERLYING CONFIDENCE INTERVAL CALCULATIONS

A confidence interval is based upon the concepts of the Central Limit Theorem and
the Empirical Rule. The Central Limit Theorem says that if you have a simple
random sample of 7 observations from a population with mean u and standard
deviation STD and if 7 is large, then the sample averageX is approximately normally
distributed with mean y and standard deviation (STD/ ).

An important implication of the Central Limit Theorem is that for random variables
from a population with a finite variance, the sampling distribution of the standardized
sample mean approaches the normal distribution as the sample size 7 becomes
infinite. Even if the sample values are not normally distributed, the sample average is
approximately normally distributed. Since the sample average is approximately
normally distributed, you can use the Empirical Rule to summarize the distribution
of sample averages. The Empirical Rule says that 68 percent of the values in a normal
distribution can be found within one standard deviation of the mean, 95 percent
within two standard deviations of the mean, and so forth. Figure 1 illustrates this
powerful concept. Using it, we can summarize the distribution of sample averages.

To estimate the population mean, Graph of Sample Means

a 95 percent confidence interval is Sample (from ‘a large number of samples)
very likely to contain the true Mean

population mean p. What this
means is that if we draw all A
possible samples of size 7 from a
population, the probability is 95

percent that the true mean lies [95%I
. . . . W
within two standard deviations of — =
. 30 20 1 1o 20 3
the sample. Only five percent of g 2@ 1g MEAN g 20 39
the time would we have failed to Figure 1

capture the population mean. The
only way we could be 100 percent sure we calculated the true population mean would
be to take a census of population.
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Standard Error of the Mean

Every statistic is derived from a sample, and although samples are defined as
representative of the population from which they are drawn, they differ from each
other even when drawn from the same population. Selecting a sample using a random
process should generate a sample that is unbiased (no systematic differences between
the sample and the parent population). We say that the deviations from the
population characteristics are random, and we refer to them collectively as error
variance. Now, if there is going to be error in our measurement, it is important to
know the probable magnitude of that error. Otherwise, we might be overconfident
in the statements that we make about the population from which a sample has been
drawn. The most common way of quantifying error is to compute the standard error.

A standard error is an estimate of the standard deviation of a hypothetical distribution
of values that would be obtained from a given statistic if repeated samples were drawn
from a single population. For a mean, we estimate the variability of a distribution of
means of successive samples of the same size from the same population. The standard
deviation of that distribution is estimated by the standard error of the mean. The size
of the standard error of the mean is a function of the variability of the sample and the
size of the sample. If the standard deviation of the sample decreases or the sample size
increases, the standard error will decrease.

Confidence Interval Formula

When the population variance is known, calculating confidence intervals is as simple
as selecting the confidence level (e.g., do we want to be 95 percent or 99 percent
certain that the true population mean lies within the range specified) and using the
following formula:

Population
Standard
Deviation
Confidence Interval 0'
of the Mean - U + /
N« _
I\ sample size
Average \
normal deviate
value (area under curve)
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The following table lists commonly used confidence levels and corresponding z
values. The greater the confidence level, the larger the value of z, making the

confidence interval wider.

Level of Confidence
90%
95%
99%
99.9%

Z-Value
1.64
1.96
2.57
3.30

When the Population Variance is Unknown or the Sample is Small

In most cases, we will not know the population variance. As a result, we must use the
standard deviation (s) obtained from the sample (s/, is often referred to as the sample

standard error). The formula becomes:

Population ~ Sample Average

Mean

U =)§1Z%n\

Oreplaced by

/ sample standard
deviation

sample size

Student t Distribution

The normal distribution is completely defined by 1 and the population standard
deviation. However, once we replace the population standard deviation with the
sample standard deviation, using the normal distribution is not exactly correct. The
more appropriate distribution is the student’s t-distribution. Thus, the formula

becomes:

T distribtion replaces
the normal distribution
for small sample sizes

\
= S
U - Xi‘ t(f(l—“/z)/W/ﬁ

confidence level, alpha=0.05.

df =

the degrees of freedom is one less than
the sample size (df=n-1)

is the t-value for a given degrees
of freedom and alpha level. The
confidence level for the interval is
l-alpha. For example, for 95%

t?ﬂf'(l-"/a)

Remember that, when finding the
t-value, you need to divide alpha
by 2 before you subtract 1.
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USING SAS TO CALCULATE CONFIDENCE INTERVALS

Calculating confidence intervals is extremely easy in SAS, whether on the mainframe
or on the PC. The following assumes that the version of SAS software used is 6.07 or
later. This version added an option to the PROC MEANS procedure which produces
the upper and/or lower confidence interval.

SAMPLE SAS PROGRAM AND OUTPUT

Proc MEANS data=CDRIVEMMYFILE alpha=05 clm
\ |l | \ | |
A8

input SAS file Confidence 8A& option -

Drocedure (IilSaamcﬁlcnamc) level to calculate the
' (eg. $%-09) upper and lover
99%-01) confidence interval

clm = both upper and lower
uclm- upper fimit only
clm - lower fimit only

| sas cope |

LIBNAME DDRIVE "D:\";
RUN;

PROC MEANS DATA=DDRIVE.SAMPLE94 ALPHA=.05 CLM;
VAR PAIDAMT;
RUN;

| END SAS CODE ||

OUTPUT

Variable = PAIDAMT
Lower 95.0% CLM  Upper 95.0% CLM

25.2367 25.7078
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Calculating the Confidence Interval for a Total

Thus far, we have calculated the confidence interval for a mean. What if you want to
estimate totals? The method for determining the confidence interval for a total
includes the standard error of the mean in the calculation. These are the steps you
would take:

1) Calculate the percentage added to and subtracted from the mean’s point
estimate.

2) Multiply the percentage obtained from step one by the point estimate
of the total.

3) Determine the upper and lower bounds of the confidence interval by
adding or subtracting the value calculated in step two.

An example using data from the previous output:

Given that the 95% confidence interval of the mean is 25.2367 and 25.7078 (this
corresponds to the point estimate (25.4722) + .23554):

1) Determine the difference as a percent. (0.23554/25.4722 = +.9247%)
2) Use this percent and apply it to the point estimate of the total.

Confidence Interval of Total = Point Estimate + (.009247) *(point
estimate)

Actual Data: Say the total payment for drugs used in Texas nursing
homes was $12,345,882. The confidence interval would
be 12,345,882+ (.009247)*(12,345,882) or 12,345,882 +
$114,162.

Lower Bound = $12,231,720
Upper Bound = $12,460,044
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How to Reference a Confidence Interval in a Report
In most cases, confidence intervals for estimates are listed in the Appendix of a report.
Using confidence intervals in the body of the report should be done sparingly and

only to emphasize the precision or power of the estimate.

Examples of References to a Confidence Interval in the Body of a Report

. “At the 95 percent confidence level, we project Part B charges between
$3.6 and $4.7 billion were made in 1992 on behalf of residents during
nursing home stays.”

. “For example, at the 95 percent confidence level, as few as 8.1 percent
or as many as 18.1 percent of the 1,426 provider numbers identified at
Empire Blue Shield had allowed charges.”

Examples of References to a Confidence Interval in the Appendix

A. Wound Care Product

Allowances
Confidence
Projected Interval
Total
Hydrogel Total $32,382,970 + /-
Dressings $9,270,159
Questionabl $24,778,466 +/-
e $7,620,692
Percentage 77% +/- 4%

B. 1991 Payments for Non-Legitimate Devices (Body Jackets)

Universe Size  Sample Size Estimated Payments Lower 95% Upper 95%
12,000 120 $7,021,040 $6,261,629 $7,780,450

C. National Practitioner Databank Reports

Description Value (%) 95 % Confidence
Interval
(+ or-)
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)l
Proportion of reports b 2.9%

considered useful

95.7%

DETERMINING RELATIONSHIPS BETWEEN CATEGORICAL VARIABLES

Analysis Question: How do I determine if there is a relationship
between categorical variables?

ABSTRACT

Much of the data we collect and analyze is categorical, meaning variable responses
can be classified into mutually exclusive categories such as yes/no or exhibit some
kind of ranking such as 1-5 (very satisfied - very unsatisfied). Determining whether
two categorical variables are independent requires the use of the Chi-Square test. A
significant Chi-Square statistic shows relationships exist between variables, but will
not show the direction of the relationship or whether one variable caused another to
occur. This chapter illustrates an essential tool that helps analysts determine such
things as whether response bias exists or which cross-tabulation tables result in
statistically meaningful differences between two variables.

Introduction

In many ways, the data that we encounter in inspections can be considered categorical
data. Whether our inspections look at how satisfied Medicare beneficiaries are with
the service they receive or if the services provided to Medicare beneficiaries were
medically necessary, we are examining data that can be classified into exhaustive and
mutually exclusive categories. In addition, the data may exhibit some kind of ranking,
such as degree of satisfaction.

After collecting data, we begin describing the data by counting the number of
observations in each response category and computing percentages. To determine
whether there are relationships between categorical variables, statisticians have
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developed numerous tools.

One of the most useful statistical tools for categorical data analysis is the Chi-Square
Independence Test. The Chi-Square test statistic measures whether two categorical
variables are independent. In other words, one variable does not tell us anything
about a second variable. The size of the Chi-Square test statistic indicates whether the
difference between observed and expected values is due to random error or reflects the
influence of one variable on the other.

In this chapter, we present three examples from recent OEI reports of the use of the
Chi-Square independence test in data analysis. The first example explains how the
Chi-Square test is used to determine if there is a relationship between beneficiaries'
geographic location and their feelings about services received. This example will
show, step-by-step, how one calculates a Chi-Square test statistic. The second
example illustrates the use of the Chi-Square independence test to determine if there is
an association between respondent status and size of respondent assets. This example
will show how to use SAS to perform the Chi-Square independence test for data
collected for a simple random sample. The third example illustrates using a
spreadsheet application to calculate Chi-Square.

Example 1 "1993 Medicare Beneficiary Satisfaction: Michigan," OEI-05-92-00390
Using Chi-Square Test to Determine Relationships between Two Variables

The Health Care Financing Administration (HCFA) began receiving complaints about
the service provided by the Michigan carrier. At that time, OEI was preparing to
conduct an inspection looking at Medicare beneficiaries' satisfaction with the services
provided by their local carriers (OEI-04-92-00480). A decision was made to conduct
a parallel survey of Medicare beneficiaries living in Michigan using the same survey
instrument.

The subsequent report found that Michigan beneficiaries are more dissatisfied with the
service they receive when they call their carrier. However, while the initial analysis
showed that 21 percent of Michigan beneficiaries were dissatisfied, only 14 percent in
the national sample were dissatisfied with the service they received when calling their
carrier. We questioned whether this difference was significant enough to conclude
that Medicare beneficiaries living in Michigan were more dissatisfied with the service
they received than beneficiaries nationally. We used the Chi-Square independence test
to determine whether the difference could be attributed to random chance or whether
there was an association between where Medicare beneficiaries lived and their
satisfaction with services provided by carriers.
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Table 1 is a contingency table of the joint observed frequency distribution of the two
categorical variables "beneficiary location" and "satisfaction with carrier." For future
reference, we have named the cells A-F.

Table 1: Observed Frequency Distribution
NEITHER

RESPONDE | SATISFI | SATISFIED NOR DISSATISFIE | TOTA

NT ED DISSATISFIED D L

Michigan Cell A Cell B Cell C

Observed 128 41 46 215
60% 19% 21%

National Cell D Cell E Cell F

Observed 206 32 38 276
75% 12% 14%

Total 334 73 84 491

In computing a Chi-Square test statistic, we compare observed frequencies with

expected frequencies. Expected frequency is the number of observations in a cell that
we would obtain if the two categorical variables were unrelated.

Computing expected frequencies for each cell is simply done by multiplying the row
total by the column total and dividing by the sample size. For example, to find the
expected frequency for Cell A (Michigan and Satisfied), you multiply 215 by 334 and
then divide the total by 491. This results in an expected frequency of 146. Table 2

Table 2: Expected Frequency Distributions
RESPONDENT | SATISFIED | NEITHER DISSATISFIED | TOTAL
SATISFIED NOR
DISSATISFIED
MICHIGAN Cell A Cell B Cell C
Observed 128 41 46 215
Expected 146 32 37
NATIONAL Cell D Cell E Cell F
Observed 206 32 38 276
Expected 187 41 47
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shows observed and expected Table 3: Computation of Chi-Square

frequencies for each cell.

Cell | O-E (O-E)* [ (O-E)?
The next step in computing the Chi- | | [ |77
Square test statistic involves E
subtracting the expected frequency A 128-146 | 324 2.22
from the observed frequency in each
cell and squaring this value. After B 41-32 81 2:53
squaring the value, you divide by C 46-37 81 2.19
the expected frequel}cy. Table 3 D 206-187 | 361 193
shows the computations for each
cell. E 32-41 81 1.98
The Chi-Square test statistic equals F 3847 81 1.72
the sum of the values in the right 12.567 =
hand column of Table 3. After you X2

compute the Chi-Square test

statistic, you must determine the

degrees of freedom of your

contingency table. You need the degrees of freedom to look up the critical values of
the Chi-Square distribution at a specified significance level (alpha). The confidence
level for the test is equal to (1-alpha) (i.e., the critical values associated with alpha =
.05 corresponds to the 95 percent confidence level). In this example, the degrees of
freedom equals two (2). This was computed by taking the number of rows minus one
multiplied by the number of columns minus one: ((2-1)*(3-1) = 2). Tables of critical
values for the Chi-Square distribution can be found in many statistical texts. A portion
of the table of Chi-Square critical values is shown below.

Table 4:
Critical Values of the Chi-Square Distribution
df [a=.1 |a=.0 |a=.0 |a=.0 |a=.00

0 5 25 10 5

1 12.705 | 3.841 |5.023 | 6.634 |7.8794
54 46 89 90 4

2 [4.605 |5.991 | 7.377 1 9.210 [ 10.596
17 47 76 34 6

3 [6.251 |17.814 19.348 | 11.34 [ 12.838
39 73 40 49 1

a = alpha

The critical value of the Chi-Square distribution for 2 degrees of freedom at the .01
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significance level is 9.21034. Since our Chi-Square test statistic was 12.57--a value
greater than the critical value--we reject the null hypothesis that there is no relationship
between where a beneficiary lives and their satisfaction with the carrier’s service at the

.01 significance level. We believe that there appears to be some relationship between
where a beneficiary lives and their satisfaction with their carrier’s service.

Example 2 OEI Report: "Suppliers' Acquisition Costs for Albuterol Sulfate,"
OEI-03-94-00393

Using Chi-square Independence Test to determine if two categorical variables are
statistically independent when one of the variables is respondent status
(respondent/nonrespondent).

To determine suppliers' acquisition costs for the nebulizer drug albuterol sulfate, we
asked suppliers to provide copies of invoices itemizing the prices they paid to acquire
the drug. Suppliers were asked to return these invoices along with their responses to a
self-administered questionnaire. We achieved an 86 percent response rate for the self-
administered questionnaire. However, many suppliers did not provide copies of
albuterol sulfate invoices. Nonresponse is a major source of survey error because it
often introduces bias into sample data and can make a sample systematically different
from the population from which it was drawn. With this in mind, we attempted (by
telephone and letter) to secure the missing invoices. We created a binomial categorical
data field in our survey database,"DDINVCS," to indicate invoice submission status.
After our follow-up attempts, we achieved a response rate of only 47 percent for
albuterol sulfate invoices.

With an invoice nonresponse rate of 53 percent, we had to ask ourselves the following
questions:
1) Who were the suppliers that refused to submit an invoice?
2) Why would these suppliers refuse to submit an invoice?
3) What characteristics can tell us something about why they
refused to submit an invoice?

We found that a few large-scale suppliers, with many albuterol sulfate claims in our
sample, accounted for the invoice nonresponse. We needed to test for potential bias
effects that these suppliers may have on our acquisition cost estimates. We reviewed
National Supplier Clearinghouse (NSC) supplier profile data to learn about the suppliers
in our sample (both respondents and nonrespondents) with respect to the size and scope
of their business activities. Most of the variables maintained in the NSC database are
quite incomplete. The most complete variable that we could use as a proxy for size of
supplier business activity was the categorical variable "ASSETIND." This NSC field
indicates if the supplier has assets over or under $100 million, or if the value is
unknown. Therefore, we used the Chi-Square Independence Test to determine if
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supplier invoice submission status (respondent/nonrespondent) is statistically
independent of the size of supplier assets.

In simple terms, the Chi-Square independence test would be used to answer whether the
size of a supplier's business activity tells us something about their invoice submission
status, and vice versa. We have two hypothesis from which to pursue the answer.

Null Hypothesis: Supplier invoice submission status and size of
supplier assets are statistically independent.

Alternative Hypothesis: Supplier invoice submission status and size of
supplier assets are statistically dependent.

| sas cope |
PROC FREQ DATA=A.AMY20715;
TABLES ASSETIND*DDINVCS/CHISQ;
RUN;

| END SAS CODE ||

The SAS frequency procedure tells SAS to produce a contingency table for the two
categorical variables "ASSETIND" and "DDINVCS" contained in the SAS data file
"a.amy20715". The Chi-Square option tells SAS to produce Chi-Square test statistics
and probabilities for the contingency table variables.

The following SAS Output displays the contingency table "ASSETIND" by
"DDINVCS" and Chi-Square test statistics and probabilities.
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Table b:
ASSETIND BY DDINVCS

DDINVCS

ASSETIND  Frequency
Percent
Row Pct '|
Col Pct | 1] 2| Total

+ +
ot Bds 984109
Siz 1.03 | 19.597 20.62

e

(<100 090} 5.00| 95.00 |
[72.09| 38.62]

+ + +

2| 2145 136d 350

Size 544.1 | 28.04| 72.16

(>100,000) 61.14| 38.86 |
| 89.54 |+55.281

STATISTICS FOR TABLE OF ASSETIND BY DDINVCS

Statistic DF Value Prob
Chi-Square 2 99.017 0.001
Likelihood Ratio Chi-Square 2 117.072 0.001
Mantel-Haenszel Chi-Square 1 69.929 0.001
Phi Coefficient 0.452

Contingency Coefficient 0.412

Cramer's V 0.452

Sample Size =485

Interpretation of SAS Output

When looking at the value of the Chi-Square test statistic, we want to answer the
question, "Can this value be reasonably attributed to sampling error, or is it large
enough to indicate that supplier invoice submission status and size of supplier assets are
statistically dependent?" The larger the absolute value of the Chi-Square test statistic,
the more likely that the two categorical variables are statistically dependent.

In this example, the value of the Chi-Square test statistic is 99.017 with 2 degrees of
freedom. Further, there is only .001 probability that this Chi-Square test statistic
occurred by chance/sampling error. Therefore, we reject the null hypothesis that
supplier invoice submission status (respondent/nonrespondent) is statistically
independent of the size of supplier assets at the .001 significance level.
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Knowing something about supplier invoice submission status gives us information about
the size of supplier assets, and vice versa. Suppliers possessing assets in excess of
$100 million were supported with albuterol sulfate invoices. This percent was
computed by dividing the frequency 5 (the number of suppliers with over $100 million
who responded) by the row total of 100 (all suppliers over $100 million selected) and is
given (in bold) as the row percent. In contrast, invoices were submitted for 61 percent
of claims billed by suppliers with assets under $100 million. As given above, this
percent was calculated by dividing 214 (the number of suppliers under $100 million
who responded) by all 350 suppliers with under $100 million selected and is shown in
bold.

We concluded, due to invoice nonresponse, our acquisition cost estimates are biased
with respect to size of supplier business activity. We believe that large-scale suppliers
with assets over $100 million may be able to use their market power to negotiate low
costs for albuterol sulfate with drug manufacturers, wholesale outfits, and pharmacies.
Therefore, our invoice cost calculations may actually overestimate average supplier
acquisition costs.
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Example 3 Computing a Chi-Square test statistic using a Lotus-spreadsheet

Another way to compute the Chi-Square test statistic is to use the Lotus-spreadsheet
developed by TSS staff. This spreadsheet works with 2 x 2 tables and only requires you
insert the frequency count for each cell and the column total. The table below illustrates
the layout of the spreadsheet and the results you will get. If you do not have a copy of
this spreadsheet, please contact the Technical Support Staff.

Table 6:
ASSETIND By DDINVCS
Using Spreadsheet

Spreadsheet to compute test statistic for Chi-Square and

t-test
ASSETIN [DDINVC p q s.e.
D S
1 5 95 5.0%] 95.0%| 0.0218[ 100
2 214 136 61.1%| 38.9%| 0.0261] 350
Tota 229 234 49.5%| 50.5%| 0.0227| 450

t= -9.90
Chi-sq= 98.151

NOTE: Chi-Square and t statistic values correspond to particular confidence
levels. The following are
standard Chi-Square & student’s t distribution critical values.

CHI-SQUARE t Statistic
3.84 or higher = 95% confidence level. 1.95 = 95%
6.63 or higher = 99% confidence level. 2.58 = 99%
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CHAPTER 3

DETERMINING RELATIONSHIPS BETWEEN CONTINUOUS VARIABLES

Analysis Question: How do I determine if there is a difference
between continuous variables?

ABSTRACT

Determining if differences exist between continuous variables is essential in
analyzing data more completely. As discussed in the prior chapter, Chi-Square is
used to test for differences when our variables are categorical. However, continuous
variables require the use of t-tests. T-tests are used to compare key demographic
variables such as the beneficiaries’ age among respondents and non-respondents.

This chapter explains the importance of using hypotbhesis testing, how to determine
whether we should reject or fail to reject our null hypothesis, and what assumptions
must be met before we can apply the t-test.

Introduction

There are several instances in our inspection work when it is necessary to compare the
means of two continuous variables. A continuous variable is defined as a variable
whose range (set of possible values) is an interval or a set of intervals on the real axis.
Examples of continuous variables are age, allowed amounts, number of enrollees, etc.

In order to determine whether the means of two groups are significantly different, we
develop what is called a "null hypothesis" (H_). It states that two groups would have
the same mean if the experiment were repeated a large number of times, and that
differences in any one trial are attributable to random error. The alternative or test
hypothesis (H,) states that one particular mean will be greater than the other (a one-
tailed test), or that the two means will be different, but we cannot say a priori which
will be greater (a two-tailed test). A procedure called the t-test is used to determine
the probability that the difference in the means of the two groups is due to chance.

We sometimes use a t-test to compare the ages of survey respondents and non-
respondents to our surveys [such as those in Medicare beneficiary satisfaction surveys
done by Region 4 (most recent report OEI-04-93-00150)]. A t-test can also be used to
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determine if responses to certain survey questions differ by age such as the survey of
physicians interest in filing paperless claims (OEI-01-94-00230). Another example of
the t-test is to compare the means of two samples, one before and one after a certain
policy change has been implemented

Several t-tests were performed for the Region 6 inspection on the End-Stage Renal
Dialysis (ESRD), “Know Your Number” brochure (OEI-06-95-00321), which
randomly sampled 132 hemodialysis facilities about their experiences in distributing
this brochure to their patients. One hypothesis explored was whether facilities
varied in the way they rated the patient brochure based on how interested their
patients were in finding out about adequacy information. Our alternative hypothesis
said facility staff rating the brochure as excellent would also have more proactive
patients; thus the means would not be equal. Our goal was to either reject or fail to
reject the null hypothesis.

H_: Mean of Group 1 (rated brochure excellent) = Mean of Group 2
(didn’t rate excellent)
H,: Mean of Group 1 does not equal Mean of Group 2

There are several assumptions that must be met before we can apply the t-test. First,
the two groups must be independent. In our inspection work, we assume that
respondents and nonrespondents are independent. Also, we will assume that the two
groups are independent populations. In this case, one group consisted of facilities
rating the dialysis brochure as excellent, while the other group consisted of facilities
not rating it as excellent. The second assumption is that the theoretical distribution of
sampling means is normally distributed. This can be achieved by selecting sample
sizes of at least 30 from each group, although sample sizes of less than 30 can be
normally distributed. In fact, as illustrated in an earlier chapter, we can test whether
our data is normally distributed using PROC UNIVARIATE in SAS. For the
example below, we assume the distributions are normally distributed. The two
groups analyzed in this example contain 22 and 73 facilities each. Finally, the
variances of the two groups should be approximately equal. This assumption is
automatically checked by SAS each time the t-test is performed. Two sets of values
will be given, one for equal variances and the other for unequal variances. We will
explain later in this chapter how this appears in the output and how to interpret the
results.
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| sas cope ||
PROC TTEST DATA=ESRD.IIl ESRD;
CLASS Q15_EXC;

VAR Q7;

RUN;

| END sAs coDE ||

PROC T-TEST has two parts. The CLASS statement names the independent
variable- the variable that identifies the two groups we are comparing. In this case, it
is the group of dialysis facilities rating the brochure as excellent versus the group who
did not. The variable on the VAR statement is the dependent variable. In the
example that follows, the dependent variable is average percentage of patients in
facilities interested in inadequate dialysis.

OUTPUT
Variable: Q7
Q15 EXC N Mean Std Dev Std Error Minimum
Maximum
1.00 15 75.06666667 22.36855786 5.77553681
1.00000E + 01 94.00000000
2.00 57 52.33333333 28.20418746 3.73573589

0.00000E+00 100.00000000

Variances T DF  Prob>|T|

Unequal 3.3050 2/7.0 0.0027/
Equal 2.8867 70.0 0.0052

Jnteryrgtat\z[grg %?SeffSa{?utﬂual F' =159 DF = (56,14) Prob>F' = 0.3411

First, we need to examine the SAS results to determine which set of t statistics to look
at, either those for equal or unequal variations. In this example, the SAS results show
the variances of the two groups are equal. We fail to reject the null hypothesis shown
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above (H,: Variances are equal) because Prob |'T|=0.3411 is not significant. We look
at the t statistic for equal variances instead. The t-statistic of 2.8867 is significant at
the 99 percent confidence level since the Prob> | T | =.0052 (rounded to .01) and leads
us to reject our original null hypothesis, concluding the means are not equal. If

Prob >F had been significant at the 95 percent confidence level (equal to 0.05 or less),
we would have used the t statistic corresponding to unequal variances (t=3.3050).

Reporting Results

OEI Finding in Report

Facilities rating the brochure as excellent for educating patients were significantly
more likely to report more of their patients were interested in adequate dialysis. For
example, facilities rating the brochure as excellent reported 75 percent of their patients
were interested in adequate dialysis. In contrast, facilities who did not give the
brochure an excellent rating reported only 52 percent of their patients were interested
in adequate dialysis (see table below).

PERCENT OF PATIENTS REPORTED INTERESTED IN ADEQUATE DIALYSIS
By Facilities Rating the Brochure Excellent

Facility rated brochure as excellent Average percent of patients interested in adequate dialysis
Yes 75%
No 52%
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CHAPTER 6

ANALYZING DATA USING REGRESSION ANALYSIS

Analysis Question: How do I determine which key survey variables
affect an outcome?

ABSTRACT

Once we perform a number of descriptive statistics, sometimes it is necessary to
incorporate more advanced techniques. To estimate the relationship between a
dependent variable and one or more Predictor (independent) variables linear or
logistic regression must be used. Regression analysis also allows us to determine the
direction of relationships. However, in addition to reading the material in this
chapter, it is important you already have an understanding of basic statistics and
work closely with a statistician in constructing and analyzing regression models for
our reports. A statistics class in regression analysis would be extremely beneficial in
becoming more aware of the caveats associated with using more advanced statistical
methods.

Introduction

This chapter differs from others presented in this handbook. To fully understand
regression analysis, it is recommended that you have taken at least one statistics course
and have an understanding of terms such as parameters, estimates, distributions, mean
and variance of a random variable, covariance between two variables, and simple
hypothesis testing involving one- and two-sided t-tests and the F test. Semester long
college courses are devoted to using regression techniques. As a result, it is impossible
to try and present a step-by-step approach on using SAS to perform regression analysis
in this brief chapter of the handbook. In practice, some diagnostic tests of your
regression model will likely be needed, and the model must also fit a set of stringent
assumptions. If you have not been trained in regression analysis, further reading and
consultation with a statistician or econometrician will be necessary to conduct this
type of analysis. However, since regression analysis is a powerful and useful tool, we
do want to introduce it and show the SAS code and interpretation of the results using
an OEI example to demonstrate how we have been able to use it in the past.
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Statistical Associations

In analyzing data, we often want to determine whether there is an association between
key inspection variables. For example, what factors predict a person’s annual income
(dependent variable)? Is there a relationship between a person’s gender and their
income? Using a simple t-test we could determine the level of statistical significance
between these two variables. However, could other factors (known as independent
variables) such as a person’s job experience, age, IQ, race, parent’s income, or
educational level also influence one’s income (known as the dependent or outcome
variable)?

Relying on statistical associations, using statistics such as t-tests or Chi-Square, only
allow us to measure the relationship between variables and not whether the
relationship is positive or negative. Nor do they allow us to measure the unique effect
an individual variable has on a dependent variable when numerous variables are
included in the model. We are also unable to determine which variable(s) have the
greatest impact on the outcome variable. Additionally, tests for associations are
sensitive to sample size so a given relationship is more likely to be significant in a
large sample.

To accurately analyze which independent variables influence a particular outcome
variable, such as one’s income, other variables must be considered and controlled. In
order to do this and also avoid the adverse consequences of relying on tests of
association, it becomes necessary to move into regression analysis.

Elaboration of Statistical Associations Using Regression Models

Regression analysis permits us to further explore what happens to bivariate (two-way)
associations once new, additional variables are taken into account. Only through a
multivariate regression model will we be able to fully test the simultaneous impact
numerous variables have on a particular outcome. Specifically, for each independent
variable, the slope is calculated for a line which most closely fits the relationship
between the independent variable and the dependent variable. For example, a one
year increase in job experience leads to a $1.00 per hour increase in wages. Each
independent variable will have an estimated coefficient (slope) that measures the effect
of the variable, after controlling for the other variables in the equation. This means
you can measure the unique effect of an independent variable on the dependent
variable.
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However, relying just on the correlation between one independent and the dependent
variable is not sufficient to fully answer your questions about such relationships. In
fact, they often cause you to get results which can be extremely misleading and even
damaging. Many times an original relationship is explained away, or the significance
of the relationship reduced, by a third variable. For example, suppose you want to
determine how key variables help predict future income. After running a simple t-test
you determine that there is a significant relationship between one's gender and
income, suggesting gender discrimination. You also find an association between the
years of a person’s work experience and income amount. After estimating a linear
regression equation, which includes this new variable, the significance of the gender
variable on one's income decreases dramatically. The factor which has the greatest
effect on income is not gender, but really years of work experience. This suggests that
gender discrimination in the workforce might not be as dramatic as you had originally
found before you controlled for a person’s years of work experience. Without this
further elaboration of the relationships in the data, misguided policy
recommendations could have resulted.

Technical Aspects of Regression Analysis

Regression analysis uses one or more independent variables to explain an outcome, or
dependent variable. There are several types of regression techniques used to analyze
data; two major types are explained in this chapter, linear and logistic regression
models. An analysis involving a continuous dependent variable, such as annual salary,
generally requires the use of a /inear regression model. An analysis using individual-
level data and having a dichotomous (two possible values: either a one or zero)
dependent variable generally requires the use of a logistic regression model.

The Model Building Process

The following outline presents some of the steps involved in conducting a regression
analysis.

1. Planning Stage

. Define the research question. Will one variable have a causal effect on
another? For example, does gender affect salary?

. Develop a hypothesis. A hypothesis is a statement about predicted
relationships among events or variables. For example,
H, = Gender has no effect on salary.
H, = Gender does effect salary.
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Determine other control variables. For example, which control or
intervening variables would we expect to influence salary? Which
variables are available?

Possible Control or Independent Variables for a model predicting income
include:

Educational major

Educational level

Gender

Years work experience

Age

Marital Status

Race

Work Skills

Fge th 0 Q0 o

Decide amount of acceptable variation. Depending on the type of
study you are conducting, this acceptable variation will differ. For
example, a medical or economic study might require a higher degree of
explanatory power of the independent variables compared to a study
measuring human behavior.

Run correlation matrix (covariance matrix). Test the relationships
between your independent variables. Are you measuring the same
thing twice? For example, one’s work skills and educational major
might be highly correlated (0.80 level or above). If they are correlated,
you would only use one of these variables in your regression model.

2. Developing a Regression Model

Plot variables, equation, residuals. The dependent variable should be
plotted against the various independent variables.

Refine regression model. Are there additional variables that are needed
or should some be removed from the model?

Consult experts for criticisms.
Plot any new variables, re-run correlation matrix, and interpret

residuals. Residuals from any fitted equations should be plotted against
any new variables.

3. Evaluation of Regression Model

What do your results mean? What do your results say about your
hypothesis? Is the model plausible and usable? Does it make sense?
Consult other researchers in the field you are studying.
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. Is your regression model adequate? Run diagnostic tests. Is there
systematic lack of fit? By examining the residuals, it is possible to
recognize a problem such as the omission of key variables.

. Look at R-square (Goodness-of-fit) for standard linear regression model
or the adjusted R-square for logistic regression models.

. What does your model say about your control variables? Were they
statistically significant predictors of your outcome?

. Is your model applicable over time?

Further Developing of a Regression Model

A regression model specifies the equation for the line(s) which most nearly fit the
relationships between the independent and dependent variables. Ideally, the equation
will include all independent variables which have a significant unique association with
the dependent variable. The goal in building either linear or logistic regression
models is to include hypothesis testing and theoretical research in your regression
models. For example, what does the literature already say about your particular
topic? Unlike much academic research, our work topics are often exploratory in
nature and have not been thoroughly studied by other researchers. If research exists
on your topic, your regression model should be based on this research and should
help guide you in developing your survey instrument or the data elements you request
for your dataset. For example, if the research shows that age also affects annual
income then you would want to be sure you have a variable measuring age.

You will always want to include key demographic variables about both individuals in
your sample, (i.e., race, educational level, gender) or groups in your sample (i.e.,
region of the country, facility size, or ownership type). If no literature exists about
your inspection topic, exploratory research is done to develop a model that can be
used as a baseline for future research. It is extremely important that all variables
incorporated in the final regression model be based on your theoretical research or
plausible explanations for the relationships that are identified.

Testing for Correlation between Variables

To test whether or not there are any relationships between independent variables in
your model, it is important to examine pairwise correlations among all variables. By
running a correlation matrix using SAS, you will be able to determine variables which
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variables are related to each other. Perfect correlation would result in a correlation
coefficient of 1.0, meaning you have identical responses for every observation for a
pair of variables.

An example of correlated variables in a prior OEI study involved two survey variables
that questioned beneficiaries about their reading and writing skills. Based on a
correlation coefficient of 0.90 for this pair of variables, we found that beneficiaries in
our dataset reporting they had reading difficulties also had writing difficulties. In this
case, we only included one of the two variables in our regression model. Including
variables that are highly correlated (usually 0.80 or above) with each other will reduce
the efficiency of the variable coefficients in your model.

| sAs copE ||

PROC CORR DATA=SSA;
MODEL HARD = READING WRITING......
RUN;

| END SAS CODE |
Linear Regression Models: An OEI Example

Linear regression analysis is used when the dependent variable is continuous and
numeric, such as annual salary. Provided the dependent variable is continuous,
several or all of the independent variables may be binary (one or zero) or categorical
variables. In the OEI report "Medicare Risk HMO Performance Indicators" (OEI-06-
91-00734), several examples of linear regression models are found. To help identify
potential independent variables for inclusion in the regression models, we relied on
the limited literature available on Medicare risk HMO disenrollment rates and key

associations discovered in another OEI report, Medicare Perspectives of Medicare
Risk HMOs (OEI-06-91-00730).

We hypothesized that HMOs with a higher percentage of unhappy beneficiaries
would lead to higher future beneficiary disenrollment in our sampled HMOs.
However, we did not know which key variables from our survey data of Medicare
risk HMO beneficiaries would be the best predictors of our HMOs future
disenrollment rates. By using a regression model, we wanted to identify the
significant predictor variables that we could recommend for researchers and the
Health Care Financing Administration (HCFA) to focus on when evaluating
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Medicare risk HMOs.
Independent Variables

Certain demographic variables about HMOs were used as control variables in the
model. Many of these variables were categorical variables and needed to be
dichotomized (0 or 1) for each category prior to using them in our regression model.
To avoid a major mistake in dealing with these variables, one of the categories must
serve as the referent category. For example, for the variable measuring the HMO
model type (Staff, Group, or IPA), we only included two of the three dichotomized
variables in our regression model. Both the staff and group models were included in
the model, while the IPA model served as the referent category. The same method
was used in handling variables measuring the region of country in which HMOs were
located. For example, South, Northeast, and Midwest were included in the model,
while West served as the referent category. Other demographic variables included in
the model were HMO size, HMO profit status, competitive status, and the percentage
of beneficiaries from each HMO who received their care through fee-for-service prior
to joining the HMO. Table 1 provides a complete description of these variables.

Table 1: INDEPENDENT VARIABLE DESCRIPTIONS
Key Demographic Variables

Variable Description

STAFF 1 = Staff HMO, 0 = IPA HMO

GROUP 1 = Group HMO, 0 = IPA HMO

SIZE # of Medicare Risk Beneficiaries enrolled in HMO

SOUTH 1 = HMO located in South, 0 = HMO located in West
NEAST 1 = HMO located in Northeast, 0 = HMO located in West

MIDWEST 1 = HMO located in Midwest, 0 = HMO located in West

FFS Percent of beneficiaries receiving prior care through fee-for-service

PROFIT 1 = HMO is for profit, 0 = non-profit HMO

COMPETE 1 = HMO is in competitive area, 0 = HMO is in non-competitive area

CHAPTER 6 ANALYZING DATA USING REGRESSION ANALYSIS Page 41



After controlling for all the demographic variables, we wanted to see which of the key
variables in Table 2 were significant predictors of HMOs disenrollment rates. The
non-demographic independent variables included in the model were based on prior
literature and key associations discovered in our prior report.

Table 2: INDEPENDENT VARIABLE DESCRIPTIONS
Key Variables of Interest (Non-demographic)

Variable Name Description

POOR_SER Percent of beneficiaries with HMO doctor not providing Medicare services,
hospital care, or referral to specialist care

SICK Percent of beneficiary-reported serious health problems

Q _HEALTH Percent of beneficiaries asked questions about health problems, at time they
applied for HMO membership

HOUR WT Percent of beneficiaries usually waiting an hour or more before seeing their
primary HMO doctors

COMPLAINT Percent of beneficiaries reporting their primary HMO doctor did not take
their complaints seriously

OWN _SERV Percent of beneficiaries in last year, getting Medicare covered services on their
own without primary HMO doctor or HMO first approving

HMO_PRIOR Percent of beneficiaries reporting their HMO most concerned with holding
down the cost of medical care

| sAs copE ||

PROC REG DATA =HMO.ENRHMO;
MODEL NADM 92 = PROFIT POOR SER COMPLAINT
STAFF SOUTH

SIZE GROUP FFS COMPETE SICK NEAST MIDWEST
HOUR WT Q HEALTH

OWN SERV HMO PRIOR /selection= FORWARD
SLENTRY =0.05;
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RUN;

| EnD sAs copE ||

The PROC REG procedure invokes the SAS regression for the specified dataset. The
MODEL statement is in the form: dependent variable=independent variable(s). The
selection=FORWARD indicates that the method for variable selection is the
FORWARD method. There are several types of methods for variable selection. A
discussion of the merits of each type of method (forward, backward, and stepwise) may
be found in a regression textbook. The FORWARD method begins by finding the
variable that produces the optimum one-variable model and tries to improve on the
model by adding variables one by one until no variable considered for addition to the
model provides a reduction in sum of squares considered statistically significant at a level
specified by the user. This level is given by the SLENTRY option. In the example
above, a SLENTRY of .05 was chosen meaning that a variable has to be significant at the
95 percent confidence level for providing a reduction in the sum of squares.

Linear Regression Results

The following table shows the overall regression results of our reduced models used in
the report. Some key information from the SAS output includes the non-standardized
regression coefficient (parameter estimate), intercept, standard error, t-value for all
variables, significance level (probability > |t|), and the R,
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Model: MODEL1
Dependent Variable: NADM 92
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value
Model 3 961.31976 320.43992 8.816
Error 3b 1272.20227 36.34864
C Total 38 2233.52204
Root MSE 6.02898 R-square 0.4304
Dep Mean 9.75795 Adj R-sq 0.3816
C.V. 61.78535
Parameter Estimates
Parameter Standard T for
Variable DF Estimate Error
Parameter=0 Prob > |T|
INTERCEP 1 -5.193875 3.36713875 -
0.1319
PROFIT 1 0.048672 0.02314383
0.0427
POOR _SER 1 0.684686 0.23699629
0.0066
COMPLAINT 1 0.515142 0.20921318
0.0189

Prob>F

0.0002

HO:

1.5643

2.103

2.889

2.462

Intercept and Regression Coefficients

The intercept is a constant which is added to the regression model and is based on the
“Y” value when all independent variables are set to zero. In the regression equation

shown below, the intercept is -5.19. Because the intercept is negative, we subtract it
from the value predicted by the regression equation.

The nonstandardized regression coefficient indicates the change in “Y” associated with a
one-unit change in the independent variable, while holding the other variables constant.
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The nonstandardized coefficient represents the “raw score” form. Because independent
variables have their own unit of measurement, with different means and standard
deviations, the nonstandardized coefficients in your model cannot be assessed for their
relative importance between variables.

Regression Equation

Based on the SAS output shown previously:
Y’ = -5.19 (intercept) + 0.049 (profit) + 0.685 (poor_ser) + 0.515 (complaint)

In prior OFI studies, we have usually shown the nonstandardized regression coefficient.
However, you may choose to use the standardized regression coefficient (beta weights)
instead. Although not shown in our SAS output, beta weights are the coefficients that
would be obtained if all variables were standardized. Thus, giving them the same unit of
measurement (mean of zero and standard deviation of 1). By standardizing regression
coefficients, you can reflect the relative importance of the various variables in your
model.

Standard Errors

The standard error for each coefficient estimate is a measure of sampling error or the
errors in our estimates due to random fluctuations in our sample. The smaller the
standard error, the better the sample statistic estimates the population parameter. The
parameter estimate divided by the standard error gives us the t-value for each
independent variable.

t-Value

The t-value for each variable tests for the significance of each independent variable’s
effect on the dependent variable. The last column on the SAS output gives the
probability of the t-value. The t-values and the associated probabilities (probability >
|t|) test the null hypothesis that, in the population, the regression coefficient is equal to
zero and answers the question, “If the true slope or intercept were zero, what would the
probability be of obtaining, by chance alone, a t-value as large or larger than the one
actually obtained?”

Because the example shown on the prior page used a forward selection method and
SLENTRY =0.05, only coefficients with a p-value of .05 are listed. The independent
variable POOR _SER is significant at the .01 level since the corresponding p-value =
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.0066. All three independent variables listed in the SAS output allow us to reject the null
hypothesis and conclude these estimated parameters are significantly different from zero.

R’ and Adjusted R*

The R? indicates the percent of variance accounted for by the linear combination of
independent variables. In the following SAS output, a R? of .43 indicates the linear
combination of the three variables accounts for about 43 percent of the variance in future
HMO disenrollment rates. Also listed, is the adjusted R’ which accounts for degrees of
freedom: N-1 or the number of observations in your sample minus 1. The adjusted R” is
considered a more conservative measure because it more closely approximates the
population’s true value. In this example, the adjusted R” is .38.

Interpretation of SAS Output

Each parameter estimate measures a one unit change in the associated independent
variable and predicts an increase (or decrease if the sign of the parameter is negative)
equal to the parameter value, holding all other independent variables constant. For
example, in the SAS output table, the estimated coefficient for the COMPLAINT
variable is 0.51. This means that for each one percent increase in the proportion of
beneficiaries who felt that their doctor didn’t take their health complaints seriously there
is a 0.51 percent increase in the disenrollment rate for an HMO, holding the
POOR_SER and PROFIT variables constant. The probability that this parameter is at
least 0.51 is 0.0189, more than meeting a .05 significance level criteria.

Discussion of Results: OEI Finding

HMO:s with higher disenrollment rates had more enrollees who reported service access
problems.

Enrollees who said they experienced poor service, whose complaints were not taken
seriously, and who were in for-profit HMOs, were more likely to come from HMOs
with higher disenrollment rates. These three factors helped explain much of the
variation in our HMQOs' Calendar Year 1992-93 disenrollment rates, even after
controlling for such structural characteristics as HMO type and enrollment size (see

Table 3).
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Table 3: DEPENDENT VARIABLE = Annualized adjusted disenrollment rates for '92 & '93"
N = 39 HMOs, enrollees only™
R’ = .43 & Adjusted R’ = .38

Parameter Standard Probability
Variable Estimate Error t-Value > |t]
INTERCEPT -5.19 3.37 -1.54 1319
POOR_SER 0.68 0.24 2.89 .0066
COMPLAINT 0.51 0.21 2.46 .0189
PROFIT 0.05 0.02 2.10 .0427

The adjusted disenrollment rate excludes the administrative disenrollees (based on a formula created by our survey data,
see the report for further explanation)
Excludes 6 HMOs; 2 dropped their risk HMO contract, 3 had a low number of disenrolled respondents, & 1 split into

two risk HMOs, transferring many beneficiaries into a new HMO.

Logistic Regression Analysis: An OEI Example

Logistic regression analysis is used when the dependent variable is dichotomous or
binary (one or zero). The "Medicare Risk HMO Performance Indicators" (OEI-06-91-
00734) report highlights a logistic regression model. Because all logistic regression
analysis must be done using individual-level data as the unit of analysis (i.e., a beneficiary
or a state); we used key information about beneficiaries' experience with their HMO.
Our dependent variable measured whether or not beneficiaries disenrolled from their
HMO. With dichotomous variables, we do not want to use Ordinary Least Squares
(OLS) regression analysis, which is used for linear regression analysis. This is because
the resulting estimates are not the closest fit to the data and OLS will predict outcomes
less than zero or greater than one. The technique we use instead is called logistic
regression because the probability distribution for the dependent variable has a logistic,
rather than a normal, distribution. The mathematical technique for logistic regression is
called Maximum Likelihood Estimation rather than the OLS. For a brief description of
these techniques refer to the glossary. A listwise deletion was used in this analysis so
only beneficiaries who answered all of the questions were included in the regression
model. Table 4 includes a complete list of all variables used in this model.
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Table 4: VARTABLE DESCRIPTIONS
DEPENDENT VARIABLE: DISENROLLEE

Variable Name Description

SEX 1 = Beneficiary was male, 0 = female
DISABLED 1 = Disabled, 0 = Aged beneficiary
AGE Beneficiaries' age

COMP AREA 1 = Beneficiary lived in a non-competitive area,
0 = Beneficiary lived in competitive area

PROP_USE 1 = Low/Medium use of medical services by beneficiary,
0 = High use of medical services

SICK 1 = Beneficiary was rated as very sick,
0 = Beneficiary was not rated as moderately sick or not sick

PRIOR_HMO 1 = Beneficiary came previously from a HMO,
0 = Beneficiary came previously from fee-for-service

HMO PRIOR 1 = Beneficiary reported their HMO was most concerned with holding down
the cost of their medical care, 0 = Beneficiary reported their HMO was most

concerned with providing the best care possible

The logistic regression model illustrated here measures the effect of beneficiaries’ negative
HMO experiences on the likelihood of disenrollment, even after controlling for a number of
demographic characteristics, such as age, sex, and health status.

| sas cope |

PROC LOGISTIC DATA-HMO01.SMHMOS;

MODEL STATUS - SEX DISABLED AGE COMP_AREA
PROP_USE SICK PRIOR_HMO HMO_PRIO;

RUN;

| END sAS CODE |
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Logistic Regression Results

The variables created for this analysis are binary (except age), characterizing beneficiaries
with either a one (1) if the characteristic existed or a zero (0) if otherwise (see Table 4
above). For this regression model, beneficiaries or events coded as zero represent the
referent (the one which the other category will be compared to) category. The
dependent variable estimated in this model, disenrollment status, measured the change
from the referent status (enrolled) produced by each independent variable.

We used SAS to run this logistic regression model. The model allows us to estimate the
probability of a beneficiary disenrolling from their HMO (p) or remaining enrolled (1-g),
based on the linear combination of independent variables.

That is, In(p/1-0) = By + B: X, + B.X, + ... + BX,

where B; is the coefficient estimated by the equation, X is the value of the independent
variable, and k is the number of independent variables in the equation, and ln(p/1-g) is
the log of the odds ratio of the dependent variable having a value equal to one
(disenrollees).
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Data Set: HMO1.SMHMO®6

Response Variable: DISENR

Response Levels: 2

Number of Observations: 674

Link Function: Logit

The LOGISTIC Procedure

Response Profile
Ordered

Value DISENR Count
Enrollee 1 0 5056
Disenrollee 2 1

169

Testing Global Null Hypothesis: BETA=0

Intercept
Intercept and
Criterion Covariates Chi-Square for
Covariates
AlC 761.124 713.134
SC 765.638 776.319 .
-2 LOG L 759.124 685.134 73.990 with
13 DF
{p=0.0001)
Score 80 424 with 13 DFE
{(p=0.0001)
Analysis of Maximum Likelihood Estimates
Parameter Standard Wald Pr > Standardized
Odds
Variable DF Estimate Error Chi-Square Chi-Square
Estimate Ratio
INTERCPT 1 -7.5035 1.8258 16.8892 0.0001
SEX 1 0.4607 0.1915 5.7847 0.0162
0.126435 1.585
DISABLED 1 -0.0604 0.4683 0.0166 0.8974
-0.007588 0.941
AGE 1 0.0172 0.0164 1.0990 0.2945
0.066053 1.017
COMP AREA1 0.0782 0.1927 0.1646 0.6850
0.021552 1.081
PROP USE 1 -0.0627 0.2515 0.0621 0.8032
-0.012918 0.939
SICK 1 0.0790 0.3651 0.0469 0.8286
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Interpretation

Using the logistic regression model, interpretation of the coefficients, B; can be translated
easier using the exponential of the coefficient, known as the odds ratio. The estimated
odds ratio reflects the extent to which the independent variable increases or decreases the
odds that a beneficiary disenrolled from their HMO. An odds ratio of 2.4 for a
particular independent variable, such as HMO_ PRIO, is translated as: the beneficiary is
2.4 times more likely to have disenrolled, if they said their health got worse as a result of
the care received by their HMO. Significance for each variable is determined by use of a
Chi-Square distribution rather than the t-distribution used in linear regression.

Highlighted variables are statistically significant at the .10 confidence level or better, as
found under the column “Pr > Chi-square.” It is common to refer to variables being
significant at the .01, .05 or .10 confidence levels. For example, the variable
HMO_PRIO is significant at beyond the 0.05 confidence level (p=.0001). For this
variable, it is true that 95 out of 100 times this parameter estimate will approximate the
true value in the population.

The standardized coefficient provides a way to rank the relative importance of the
variables according to their effect on beneficiary disenrollment from their HMO.
Higher absolute values imply a greater effect. For example, the variable HMO PRIO
has the highest absolute value in this model.

There is also a way to determine how well the model fits the data by determining the
concordant or C value for the equation. This represents the percentage of times for
which the model accurately predicts the observed outcome (enrollment/disenrollment).
For this model, the C value is .69. Values greater than 0.5 indicate a fit and values close
to 1.0 are the ideal.

Discussion of the Results
In this example, variables influencing beneficiaries to disenroll, after adjusting for

everything else include 1) beneficiaries' HMO prioritizing holding down the cost of
medical care and 2) being a male beneficiary.
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CHAPTER 7

SELECTING SIMPLE AND STRATIFIED RANDOM SAMPLES

Analysis Question: How do I select a simple or stratified random sample?

ABSTRACT

Nearly every inspection requires selecting a sample from a population. One of the
most common methods used is systematic sampling, which approximates simple or
stratified random sampling. To select a systematic sample, we start with a
population file that is in random order, and then develop a selection criteria for
generating the sample, such as every 100th beneficiary. This chapter describes the
process for selecting a simple and stratified random sample, includes an in-depth
explanation of the SAS program language, and illustrates how to a use PROC
FREQ to provide population counts for each strata.

Introduction

Drawing a sample is a common occurrence in OEL Systematic random sampling was
used to select the sample given in the examples below. To select a sample, we take a
unit at random from the first K units and every Kth unit thereafter when K = N/n.
For example, if K is 15 and the first unit drawn is the 13th on the file, the subsequent
units are numbers 28,43,58, and so on. Systematic sampling is used by OEI, because
it simplifies the sample selection process. Also, it is essentially equivalent to simple
random sampling (selecting random numbers from a table or generation by a
computer) under certain conditions. The main condition we must first meet and
understand is that the population we sample from is in “random” order. In other
words, if a file is in HICN order, we assume the item being measured has no relation
to the HICN of the individual.
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Standard Process for Selecting a Sample Using SAS

First start with a master database; for example, all hospital inpatient claims in 1995.
Apply a pre-determined set of criteria to the database creating a subset file; for
example, all patients admitted between June 1 and December 31 with a diagnosis of
stroke. The sample would be selected from this subset, which is our sampling frame.

The SAS programs for selecting a sample can be used on either a PC or mainframe
computer. Usually sample selection is performed on the mainframe due to the file’s
size and then the sample file is downloaded to a PC for analysis and manipulation.
Before doing the actual procedure, you need to know the total number of records in
your subset file and the number of records wanted in the sample. Use a PROC

FREQ, PROC SUMMARY, or PROC UNIVARIATE to determine the number of
records in the subset file (population or sampling frame).

| sas copE |

IF N =1 THENDO;
F= FREQ /SAMPLE;
G=UNIFORM(0)*F;
N=1;

END;

RETAIN N F G;

IF N GE G THEN DO;
OUTPUT;

N=N-F+1;

END;

ELSEN+1;

| END SAS CODE |

The program works as follows:

1. A DO loop is set up within each group to be sampled.
A skip interval (F) is computed using the population and sample size for
each group.
3. A random starting point (G) is selected, using the SAS function UNIFORM,
between one and the skip interval.
4. The process begins with the first observation on the file.
5. A comparison is made between the observation number and the random start.
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6. If the observation number is greater than or equal to the random starting
point, it is selected for the sample. Otherwise, the file is advanced to the next
record.

7. Once a record is chosen, the skip interval is subtracted, and 1 is added to
begin the DO loop comparing N to G all over again. This process
continues until the entire file has been subjected to sampling.

In line 2 of the program above, FREQ is a generated variable in a PROC
SUMMARY. It is a count of the number of records. In SAS, N is another way to
look at or use the observation number. It is kept internally in SAS, does not show as
a variable on a printout, and changes as the record is put into different files. In the
following example, N _(see line 3) is used to get to the first record in the file to be
sampled.

Example 1
In the example below, I wanted 840 records in my sample. The population sampled

had 304,435 total records. This program illustrates a simple random sample without
stratification or grouping of the data.

| sas cope ||

DATA OUT.S1 (DROP= N F G);
SET IN.S1;

IF N =1 THEN DO;
F=304435/840;

G =UNIFORM(O) *F;
N=1;

END;

RETAIN N F G;

IF N GE G THEN DO;
OUTPUT;
N=N-F+1;

END;

ELSE N+ 1;

RUN;

| END SAS CODE |
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Example 2

This example shows how to set up your strata and then select a sample from within
each strata. This program is best used when you only have a few strata.

| sas cope ||
1 DATA STRAT1 STRATZ;
2 SETIN.ST;
3 IFSTATEIN (‘CA’ ‘FL’ “TX’ ‘IL’ ‘NY’) THEN
4 OUTPUT STRAT1;
5  ELSE OUTPUT STRATZ2;
6  DATA OUTT;
7  SET STRATI;
8 IF_N_=1THEN DO;
9 F=1572/750;
10 G=UNIFORM(O)*F;
11 N=1;
12 END;
13 RETAIN N F G;
14 IF N GE G THEN DO;
15 OUTPUT;
16 N=N-F+1;
17  END;
18 ELSEN+1;
19 DATA OUT2;
20  SET STRATZ2;
21 IF N =1 THEN DO;
22 F=3248/250;
23  G=UNIFORM(O)*F;
24 N=1;
25  END;
26  RETAINNF G;
27  IF N GE G THEN DO;
28 OUTPUT;
29 N=N-F+1;
30 END;
31 ELSEN+1;
32 DATA OUT.S1;
33 SET OUT1 OUTZ;
34  RUN;

| END sAs coDE ||
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This program was written for a sample divided into only two strata (Operation
Restore Trust (ORT) States and non-ORT States). A previous PROC FREQ on
STATE provided the strata population counts. Lines 1 to 4 create two strata, ORT
States versus all other States . The variable STATE is used to group the data. Lines 5
and 6 are accessing only the records from the ORT State’s strata. We selected 750
units from the ORT State’s strata. Lines 18 and 19 are using only records from the
second strata (all other States) from which we selected 250 records. Lines 31 and 32
join the 750 records selected from the first strata and the 250 from the second into
one newly created file (OUT.S2) containing all the sampled records.

Example 3

This third example also illustrates how to set up your strata and then select a sample.
However, in contrast to when you have few strata, this SAS program is a more
effective example for using when you have many strata or when the population file is
very large.

In this example, we use GHPNO as the stratification variable. We wanted 550 cases
sampled if GHPNO equaled ‘H1036' and 133 cases sampled for each of the other
values of GHPNO. Lines 10 through 30 perform the same task as lines 5 through 17
in the previous example. This is the process of picking a random start, calculating a
skip interval, and selecting the appropriate observation. It appears differently,
because words have been substituted for the letters N, F, G. We purposely included
this example to show how the sampling program can be integrated into other
programs. This program also uses a PROC FREQ to provide the population counts
dynamically (i.e., instead of coding the numbers into the calculation, a variable name
is used).
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| sas cope ||

1 PROC FREQ DATA =IN;

2 TABLES GHPNO /OUT =NUMCNT NOPRINT;
3 PROC SORT DATA=NUMCNT(KEEP =GHPNO
COUNT);

4 BY GHPNO;

5 PROC SORT DATA =IN OUT =INSRT; BY GHPNO;
6 DATA UNIV;

7 MERGE INSRT (IN=MASTER) NUMCNT (IN=GHP);
8 BY GHPNO;

9 IF MASTER AND GHP;

10 DATA OUT.S1(DROP=REC INTERVAL PICK OFFSET
COUNT);

11 SET UNIV;

12 BY GHPNO;

13 RETAIN REC INTERVAL PICK;

14 IF FIRST.GHPNO THEN DO;

15 IF GHPNO ="H1036' THEN DO;

16 INTERVAL=COUNT/550;

17 OFFSET =UNIFORM(O) *(COUNT/550);

18 END;

19 ELSE DO;

20 INTERVAL=COUNT/133;

21 OFFSET =UNIFORM(O) *(COUNT/133);

22 END;

23 PICK = OFFSET;

24 REC=1;

25 END;

26 IF REC GE PICK THEN DO;

27 OUTPUT;

28 PICK + INTERVAL;

29 END;

30 REC +1; RUN;

| END SAS CODE |
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DATA EXAMPLE for program above.

Data File Grouped by “GHPNO”

GHPNO COUNT
PERCENT
HOO033 1456
25.0
H1036 2256
40.0
H1222 365
5.0
H1234 1133
200 e 106 Result of MERGE:
2.0
H5432 200 | e
3.5 Merged Master &
H6543 3256 GHP Files -----------
4
GHPNO COUNT PERCENT BENENUM ZIP
HO033 1456 25.0 2546 21044
HO033 1456 25.0 2546 21044
HO033 1456 25.0 2546 21044
H1036 2256 40.0 6543 21007
H1036 2256 40.0 6543 21007
H1036 2256 40.0 6543 21007
H1036 2256 40.0 6543 21007
H1036 2256 40.0 6543 21007
H1036 2256 40.0 6543 21007
H1222 365 5.0 1234 21207
H1222 365 5.0 1234 21207
H1222 365 5.0 1234 21207
H1222 365 5.0 1234 21207
H1234 1133 20.0 4325 21113
H4786 100 2.0 600 21114
H4786 100 2.0 600 21114
H4786 100 2.0 600 21114
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H5432 200 3.5
H6543 325 4.5

Results of sample selection:

800

1256

20708
20800

The PROC FREQ (lines 1 and 2) provides the population counts for each value of

GHPNO. The /OUT= option
on line 2 creates a dataset of the
results of the frequency
distribution. The two PROC
SORT statements are used to
ensure both files are in the
correct order for the MERGE.
In lines 7 to 9, MERGE appends
COUNT (population total) to
each record in the universe based
on GHPNQO’s value. On line 14,
the FIRST. statement creates a
logical variable which is used to
determine the first record, last
record, and in-between records
in a sorted file.

Selection of Stratified Samples

GHPNO POP. COUNT # SELECTED
HO033 1456 133
H1036 2256 550
H1222 365 133
H1234 1133 133
H4786 100 100
H5432 200 133
H6543 325 133
TOTALS 5835 1315

These next two charts show, in general, what a set of data looks like before and after

Sorted Data Before

HICN
TOTSVCS

123aa

123aa

123aa

136bb

136bb
175aa

ALLW

23.40
100.00
10.50
15.20

200.00
20.20

o w

applying FIRST. and LAST
statements. In this case, HICN
1s the sorted variable.

Sorted data before applying
FIRST. or LAST.
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Sorted data after applying FIRST. or LAST.

Sorted Data After

When
queryin
g the
FIRST
and

HICN ALLW TOTSVCS FIRST

LAST

123aa 23.40 4
1 0

123aa 100.00 1
0O O

123aa 10.50 1
o 1

136bb 15.20 3
1 0]

136bb 200.00 6

0] 1

175aa 20.20 2

1 1

LAST
variable

s, you are looking at whether they are set as true (1) or false (0). To use this logic, the
data needs to be sorted by the variable being tested (see GHPNO in the program on
the second page of this chapter). Also, SAS has to be told the data is sorted by that
variable. The code for this notification follows:

| sas cope ||

DATA OUT;
SET IN;
BY SRTVAR,

/*To use SRTVAR it would look like this*/
IF LAST.SRTVAR THEN CUMTOT + ALLW;
IF FIRST.SRTVAR THEN DO;

CUMTOT =0;

END;

/* is a comment in SAS*/
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| END sAs coDE |
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CHAPTER 8

ANALYZING BENFFICIARY PAYMENT HISTORY

Analysis Question: How do I'look at a billing history for a sample
of beneficiaries?

ABSTRACT

We often need to analyze the billing history of sample beneficiaries to see how their
claims fit into their medical history from a logical point of view. It further assures
us whether health care providers are billing for services provided. This chapter
describes the various technical steps to create a billing history using SAS. Such steps
include: 1) identifying a sample of claims and creating a file, 2) writing a SAS
program to merge all claims in the universe with those in the sample, 3) selecting just
the applicable claims, and 4) creating a report that is informative and easy to read.
This chapter is especially belpful for analysts trying to duplicate work done by the
Technical Support Staff.

Introduction

This question is asked during many of OEI's Medicare studies. While our
inspections tend to focus on a particular type of service, we often have to look at
other types of Medicare claims for a sample of beneficiaries to do a complete analysis.
We could use a billing history to see if our sample claims look suspicious. For
example, if we are looking at a sample of emergency ambulance claims, we may want
to check all outpatient claims during the same time period to verify that each
beneficiary actually had an emergency room service . If there is no indication that a
person ever ended up in an emergency room, we may need to investigate the validity
of the sample ambulance claim. We could also use a billing history to compare one
group of beneficiaries to another group. For example, if we are looking at a sample of
home health services, we may find that beneficiaries that are serviced by company A
receive 5 times more visits than beneficiaries that are serviced by company B. We
could pull all Medicare claims for these two groups of beneficiaries to determine if
company A beneficiaries seem to be sicker than company B beneficiaries.
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If the two groups seem to be in similar health, company A may be billing for too

many home health visits.

Once we have decided that we need to analyze a billing history, how do we go about

doing this? First, we have to

identify the sample of claims that we

are going to study. For this
example, we will limit our focus to
claims for HCPCS E0277

(alternating pressure mattress) billed

during August, 1996. We have
created a file in SAS called
"SAMPLE" containing this data.

Next we have to create a file (or
files) of claims to be included in the
billing history that we want to
analyze. To do this, we must
decide the types of claims we want
to include, and what time frame
we are going to focus on. For this
example, we will look at any
support surface claims with
HCPCS E0277 (our sample
HCPCS), E0180, or E0194. We
will also select claims for the
sample month (8/96). The result
is a SAS filed called
"UNIVERSE."

Now, we must write a SAS
program to pull all claims from
the "UNIVERSE" file for the
beneficiaries in the "SAMPLE"
file.

The first step is to create a new
SAS file that contains a list of
unique beneficiary HICNs from
"SAMPLE" using the following

“SAMPLE" Data File

HCPCS HICN ALLOWED
DATE PLACE
EOQ277 AAA 100.00
8/01/96 12
EOQ277 BBB 200.00
8/23/96 32
EOQ277 DDD 100.00
8/17/96 12
“UNIVERSE" Data File
HCPCS HICN ALLOWED DATE
PLACE
EOQ277 AAA 100.00
8/01/96 12
EO194 AAA 50.00
8/20/96 12
EO194 AAA 50.00
8/31/96 12
EO180 BBB 25.00 8/02/
96
32
EO180 BBB 25.00
8/15/96 32
EOC277 BBB 200.00
8/23/96 32
EO180 CcCC 25.00
8/03/96 12
EO180 CCC 50.00
8/29/96 12
EOC277 DDD 100.00
8/01/96 12
EOC277 DDD 100.00
8/17/96 12
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code:
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| sas cope ||

PROC SORT
DATA =SAMPLE(KEEP =HICN)
OUT =SORTSAMP;
BY HICN;
DATA SAMPBENS;
SET SORTSAMP;
BY HICN;
IF FIRST.HICN;

| END sAs cODE ||

“SAMPBENS”
.. Data Fil
Suppose we select a sample of three beneficiaries out of the ==
four listed above and put it in a file called "SAMPBENS." HICN
Next, we merge "SAMPBENS" with the "UNIVERSE" file to QBAéA
pull just claims that are for the three sample beneficiaries using DDD
the following code:

| sas cope ||
PROC SORT
DATA =UNIVERSE;
BY HICN;

DATA BILLHIST;
MERGE SAMPBENS(IN =SAMP)
UNIVERSE(IN = UNIV);
BY HICN;
IF SAMP AND UNIV THEN OUTPUT;

| END sAs cODE ||
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The new SAS file "BILLHIST" contains the following data:

Notice that the
records for HICN
"CCC" were not
included since that
person was not one of
the three sample
beneficiaries.

The variables on
"BILLHIST" can now
be analyzed using
various SAS
procedures (PROC
MEANS, PROC
SUMMARY, etc.),
but these procedures
are beyond the scope
of this chapter. Our
goal is to demonstrate
how to create a billing
history and produce a
hardcopy for review.

“BILLHIST" Data File

HCPCS  HICN

EOQ277 AAA
EO194

EO194

EO180

EO180

EOQ277

EOC277

EOQ277

ALLOWED DATE PLACE
100.00 8/01/96 12
AAA 50.00
8/20/96 12
AAA 50.00
8/31/96 12
BBB 25.00
8/02/96 32
BBB 25.00 8/15
/96
32
BBB 200.00 8/23
/96
32
DDD 100.00 8/01
/96
12
DDD 100.00
8/17
/96
12

The simplest way to produce a hardcopy report of "BILLHIST" is with the SAS

PRINT procedure below:
| sas cope ||
PROC PRINT
DATA=BILLHIST;
BY HICN;
| END sAs cODE ||
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The output from PROC PRINT would look like this:

OBS HCPCS  ALLOWED DATE PLACE

1 EOC277 100.00 8/01/96 12

2 EO194 50.00 8/20/96 12

3 EO194 50.00 8/31/96 12
----------------------- HICN=BBB ---------—-- oo
OBS HCPCS ALLOWED DATE PLACE

4 EO180 25.00 8/02/96 32

5 EO180 25.00 8/15/96 32

6 EO0277 200.00 8/23/96 32
——————————————————————— HICN=DDD -----------—- oo
OBS HCPCS  ALLOWED DATE PLACE
7 EO0277 100.00 8/01/96 12
8 EO0277 100.00 8/17/96 12

In some cases, this type of output is all that we will need. However, there are many
occasions for which we may need additional information or a more professional
looking report. In older versions of SAS, we had to write a special DATA step
program, called DATA NULL , to create customized reports. However, the more
recent versions of SAS include the REPORT procedure which combines features from
the PRINT, MEANS, and TABULATE procedures with features of DATA NULL _
report writing into one powerful report-writing tool. Because the REPORT
procedure will allow you to compute various statistics, group and summarize data,
and customize your output, it is a good idea to review SAS documentation (SAS
Guide to the REPORT Procedure) for a complete overview of its features. We will
walk through one example of how to improve the output created with the PRINT
procedure.

But first we must decide what we can do to make our report easier to read and more
informative. We could drop the observation number (OBS) if we do not care about
that information. We could insert a heading for the report and create more
meaningful column headings. We could also move the HICN value into a separate
column next to the other variables and get rid of the string of hyphens (-). We also
could put a blank line before each HICN and only print the HICN for the first claim
so it is easy to tell when one beneficiary ends and another beneficiary begins. It
would also be helpful if we could summarize the allowed dollar amount for each
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beneficiary's claims and display this total after the last claim. Finally, we could
format the values of place to provide more meaningful information than "12" or "32".

The REPORT & FORMAT procedures will allow us to do all of these things.
However, to change the place values we also have to add a FORMAT procedure to
our program. The following SAS code will make the changes that we have indicated
above:

| sas cope ||

PROC FORMAT;
VALUE $PLCFMT
'12'="HOME'
'32'="NURSING HOME";

PROC REPORT

DATA =BILLHIST HEADSKIP SPACING =3;

TITLE;

COLUMN ('BILLING HISTORY EXAMPLE' " ' ' HICN HCPCS

ALLOWED DATE PLACE);

DEFINE HICN / ORDER CENTER 'HICN' WIDTH =4
FORMAT = $3.;

DEFINE HCPCS / DISPLAY CENTER '"HCPCS' WIDTH=5
FORMAT = $5.;

DEFINE ALLOWED / SUM CENTER 'ALLOWED/AMOUNT'
WIDTH=7

FORMAT =DOLLAR7.2;

DEFINE DATE / DISPLAY CENTER 'SERVICE/DATE'
FORMAT = $8.;

DEFINE PLACE / DISPLAY 'PLACE' WIDTH=12
FORMAT = $PLCFMT.;

BREAK AFTER HICN / SUMMARIZE SUPPRESS OL SKIP;

| END SAS CODE |
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This code performs the following tasks:

1) PROC FORMAT;
VALUE $PLCFMT
'12'="HOME'
'32'="NURSING HOME';

This procedure creates a user-defined format called "$PLCFMT" that will be
used in the REPORT procedure to print "HOME" every time that
PLACE = 12 and “NURSING HOME" every time that PLACE=32.

2) PROC REPORT
DATA =BILLHIST HEADSKIP SPACING =3;

Use the REPORT procedure to produce a report. Read data from the SAS file
"BILLHIST'. Write a blank line beneath all column headers at the top of each
page of the report. Place 3 blank characters between each column of the

report.

3) TITLE;
COLUMN ('BILLING HISTORY EXAMPLE' ' ' HICN HCPCS

ALLOWED DATE PLACE);

Remowve any titles that are in effect (from other SAS procedures, etc.). Add a
two-line heading with "BILLING HISTORY EXAMPLE" on the first line and
nothing on the second line (insert a blank line). Center this heading above the
columns for HICN, HCPCS, ALLOWED, DATE, and PLACE.

4) DEFINE HICN / ORDER CENTER 'HICN' WIDTH=4 FORMAT =$3.;
DEFINE HCPCS / DISPLAY CENTER 'HCPCS' WIDTH=5 FORMAT =$5.;
DEFINE ALLOWED / SUM CENTER 'ALLOWED/AMOUNT' WIDTH=7

FORMAT=DOLLAR?7.2;
DEFINE DATE / DISPLAY CENTER 'SERVICE/DATE' FORMAT=$8.;
DEFINE PLACE / DISPLAY 'PLACE' WIDTH =12 FORMAT=$PLCFMT.;

Each variable that will be included in the report must have a DEFINE statement
to define its characteristics. This statement indicates how the REPORT procedure
should use the variable in the report, formats the variable, and chooses the column
header. We are including five variables in this report.
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HICN, is an ORDER variable (the data is sorted by HICN and will be
grouped this way in our report). The HICN data will be under a centered
column heading "HICN", the column will be 4 positions wide and HICN is
a 3 position character field (the "$" indicates character, without it the
variable would be considered numeric).

ALLOWED is a numeric field with the values output in SAS DOLLAR
Jformat under the centered two line column heading "ALLOWED
AMOUNT." ALLOWED is a SUM variable (in addition to displaying the
values for each claim the REPORT procedure will be summarizing their
values).

HCPCS, DATE, and PLACE are DISPLAY wvariables (simply display their
data, do not perform any calculations or grouping on these variables).
HCPCS and DATE are both character format variables. PLACE has the
special format that was defined with the PROC FORMAT.

5) BREAK AFTER HICN / SUMMARIZE SUPPRESS OL SKIP;

The BREAK statement controls the REPOR'T procedure's actions when the value
of an ORDER wvariable changes. This line causes the procedure to write a
summary line after the last claim for each HICN. This line will only include a
sum of the values of ALLOWED for each beneficiary since that is the only
variable that was used to compute statistics. SUPPRESS causes the procedure to
suppress printing of the HICN value in this summary line. OL writes a line of
hyphens (-) above the values in the summary line. SKIP writes a blank line after
the summary line.
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The output from this code will look like this:
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"UNIVERSE" Data File

BILLING HISTORY
EXAMPLE

ALLOWED SERVICE

HICN HCPCS AMOUNT DATE PLACE

AAA EO277 $100.00 8/01/96 HOME
EO194  $50.00 8/20/96 HOME

EO0194  $50.00 8/31/96

$200.00

BBB EO180  $25.00 8/02/96

EO180  $25.00 8/15/96

EO0277 $200.00 8/23/96

mzZoInZ—nwICZ mZ oI

mMZoIOZ—wICZ

—nICZ2
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The billing bistory is now ready to be analyzed!
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CHAPTER 9

EXTRACTING PAYMENTS AND COUNTS BY HCPCS

Analysis Question: How do I want determine the totals for particular
Medicare Part B HCPCS?

ABSTRACT

Many studies conducted by OEI involve evaluating Part B services. One of the most
important aspects of preinspection is determining how much was paid for various
procedure codes of interest. The first step in determining how much was paid
involves accessing the data. The second step involves manipulating and printing the
data in a manner that provides useful information. This chapter discusses both of
these steps by describing four sources of Medicare Part B payment data and how to
access and manipulate this data using SAS.

Introduction

Before we start an inspection we often need to know how much Medicare paid for
each item or procedure to determine whether a study is worth pursuing. Once we
know that we are going to look at a particular area we need to decide which
procedure codes (called HCPCS) to include in our universe. We have done this for
many previous inspections as well as current inspections.

Some examples of inspections where we have had to make this decision are 1) Body
Jackets (OEI-04-92-01080), 2) Questionable Medicare Payments for Wound Care
Supplies (OEI-03-94-00790), and 3) Support Surfaces, (OEI-02-95-00370). Often there
may be a range of HCPCS for a particular service but we may decide to focus on just
the big dollar HCPCS such as was done for Body Jackets. If we want to make sure
that a specific HCPCS is included in our inspection and there is an uneven
distribution with regard to the HCPCS in our population, we have to run totals by
HCPCS to determine if we need to stratify before sampling. Totals by HCPCS are
also important when analyzing and projecting sample results.

The first question that we need to ask is "where can I find HCPCS level data?". There
are four different HCFA sources that we can use to get this data. They are:
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1)  BESS (Part B Extract and Summary System) - Contains summary level Part B
data that is updated quarterly.

2)  OIG 1% Sample Files - Contains 1% of all Medicare Part A and Part B claims.
Stored in mainframe SAS files that are updated quarterly by OEI's Technical
Support Staff (TSS).

3)  DSAF (Decision Support Access Facility) - Access to 5% of physician and
supplier claims and 100% of institutional claims. Updated quarterly.

4)  MANRLINE (Method of Accessing Nearline Data) - Access to 100% of
physician and supplier claims. This process takes much longer than the other
three options (2-4 weeks minimum).

If you only need to know the total services and dollars for several HCPCS, you
should use BESS, an easy to use menu-driven system. It contains summary level data
only; thus, you are limited in the kinds of information that you can retrieve. It is a
useful tool when you are trying to decide if there is enough money being spent in a
particular area to justify further analysis. To access BESS, you must logon to the
HCFA Data Center and type the following at the TSO "Ready" prompt:

EX 'MUOOQ.BESS'

You will then be led through a series of menus so that you can define your query.
There are options to make a user defined report and options for several "canned"
reports. The following steps show a simple example of how to access one of the
canned reports.

1) At the primary option menu select #1 (Physician/Supplier Data).

2)  The Physician/Supplier data menu will appear. Select #4 (Descriptive
Statistics).

3)  All of the canned reports will now be listed on the screen. For this example,
we will select #8 (type of service by HCPCS).

4)  You will be prompted to select a year. All of the totals are summarized by
calendar year. Select the year that you want to review.

5)  Next you must choose to either browse the output on the screen or to run a
batch program that will send the output to a printer or a file. Select the option
that you would prefer.

a. You will then be prompted to enter the HCPCS or range of HCPCS
that you are interested in. If you selected "browse" in #5, then the
output will appear on the screen. It will appear in a format similar to
the one listed below.
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ALLOWED ALLOWED PCTTO

AVG ALWD
HCPCS DESCRIPTION SERVICES CHARGES TOTAL
CHARGE
EO776 PURCHASE DME 7,500 75,000 75.0
10.00
RENTAL DME 2,500 25,000
25.0 10.00
TOTAL--ALL PLACES 10,000 100,000 100.0
10.00
b. If you selected "batch processing” in #5, you will be prompted for

printer or file information. When the batch program completes, the
output (similar to that in #5a) will be sent to the printer or file that you
specified.

If BESS data does not meet all of your needs, you will have to retrieve claims data
from one of the other three sources. We use the 1% sample files as the basis for most
OEI inspections. However, occasionally the 1% sample does not provide enough
cases for a procedure or a sampling strata. In those instances, we must use DSAF or
MANRLINE to access the larger files. For the rest of this chapter, we will assume
that we have extracted our universe of

claims from one of these three sources and "SURFACES" Data File
stored them in a SAS file. This file can be HCPCS HICN SERVICES
on the mainframe or in PC SAS file. ALLOWED
For most OEI inspections we keep EO180  AAA 1
universe data files on a mainframe because 25.00
. . EO0180 AAA 2
of their large size. We then can download 50.00
only those cases we select for use on the E0180 cCCC 1
PC. To keep things simple for this 25.00
example, we will assume that we have E0277  AAA 1
created a SAS file called "SURFACES." 25.00
EQ277 DDD 2
75.00
There are several ways that you can use E1399 BBB 9
SAS to summarize this data. We will cover 100.00
two possible ways in this chapter: 1) E1399 BBB 2
SUMMARY Procedure and 2) DATA Step. | 100.00
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The SUMMARY Procedure computes statistics on numeric variables in a SAS file and
outputs the results to a new SAS file. We can use this procedure to summarize our
claims data by total services and total allowed dollars by HCPCS. To do this, we can
use the following SAS code:

| sAs cope |

PROC SUMMARY

DATA =SURFACES;

CLASS HCPCS;

VAR SERVICES ALLOWED;

OUTPUT OUT =TOTALS
SUM(SERVICES) =TOTSRVC
SUM(ALLOWED) =TOTALLW;

| END SAS CODE |

This code creates a SAS file called "TOTALS" which contains four records (see
Table).

“TOTALS" Data File

There is one record for each

HC,PCS’ and the new HCPCS TOTSRVC TOTALLW
variables TOTSRVC and _FREQ_ TYPE_
TOTALLW contain a sum of
the values of the variables 11 400.00
SERVICES and ALLOWED 7 Y

" "o EO180 4 100.00
on the "surfaces" file. The

other two variables ( FREQ _
and TYPE ) are created by
SAS every time that you run a PROC SUMMARY. FREQ _isa count of the
number of records that went into each subgroup. For example, there were three
records on "SURFACES" that had HCPCS "E0180" so the FREQ value for E0180
is 3. The values of TYPE indicate which subgroup (defined by the combinations of
the class variables) produced the summary statistics in that record. A _TYPE_value
of 0 indicates that the record is a total summary of all of the records on the input file.
In this case, there are seven records on "surfaces" ( FREQ =7) which had 11 total
services and 400.00 total allowed dollars. A _TYPE value of 1 indicates that the
statistics are for the first class variable. Since we only have one class variable
(HCPCS), this indicates that the values are for each HCPCS. An example of a PROC
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SUMMARY with two class variables is given later in this chapter.

When performing certain statistical operations on a file, such as computing a mean,

do not include the summary record because it will distort the calculation. If you
decide that you do not want your output file (totals) to have a summary record

(_ TYPE =0), you can use the NWAY option on the PROC SUMMARY statement.
NWAY specifies that statistics should be output for only the records with the highest
_TYPE_value (highest level of interaction among CLASS variables). Also, you can
use a DROP statement if you decide that you do not want to keep the TYPE or
_FREQ_ variables on your output file. These two changes to the SAS code are shown
below.

| sAs cope |
PROC SUMMARY
DATA=SURFACES NWAY;
CLASS HCPCS;
VAR SERVICES ALLOWED;
OUTPUT
“TOTALS1” Data File OUT=TOTALS1(DROP= TYPE
FREQ )
HCPCS  TOTSRVC SUM(SERVICES) -TOTSRVC
TOTALLW SUM(ALLOWED) = TOTALLW;
EO180 4 |
1 | END SAS
0 CODE ||
0.
0
£0277 3 O | Now, the output SAS file (TOTALS1) only
1 contains three records (HCPCS,TOTSRVC,
o | and TOTALLW).
0.
0
O | By default, PROC SUMMARY does not
E1399 4 5 produce printed output like most of the
o | other SAS procedures. However, you can
0. | use the PROC PRINT to print the output
0 | file that PROC SUMMARY creates. Adding
O [ these lines to the end of our SAS code will
produce printed output.

CHAPTER 9 FXTRACTING PAYMENTS AND COUNTS BY HCPCS Page 78



| sAs cope |

PROC PRINT

DATA=TOTALS1;

TITLE 'PROC SUMMARY OUTPUT FOR
SURFACES’;

| END SAS CODE |

Looking back at the data on our original file (SURFACES), we see that we were able
to summarize the SERVICES and ALLOWED variables by HCPCS using PROC
SUMMARY. However, the HICN data was not used. Using the HICN, we can get a
count of the number of beneficiaries that had claims for each HCPCS. Yet, PROC
SUMMARY will not allow us to compute statistics on this variable because it is not
numeric. However, we can make HICN a CLASS variable as shown below.

1| SAS CODE |

PROC SUMMARY

DATA =SURFACES;

CLASS HCPCS HICN;

VAR SERVICES ALLOWED;
OUTPUT OUT=TOTALS2
SUM(SERVICES) =TOTSRVC
SUM(ALLOWED) =TOTALLW;

1| END SAS CODE |t

The result is a SAS file called "TOTALS2" which contains 13 records.
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As you can see, SAS
provides a summary of each
interaction among CLASS
variables. We have the
overall total ( TYPE =0),
the records for only the four
HICNs totaled, the records
for each of the three HCPCS
totaled, and the combination
of each HCPCS with each
HICN. In this case, we do
not care about the overall
totals ( TYPE =0), the
totals for each HICN

( TYPE =1), or the totals
for each HCPCS

( TYPE =2). We are only

"TOTALS2" Data File

HCPCS HICN TOTSRVC TOTALLW
"FREQ  TYPE
11 400.00 7
0
AAA 4 100.00
3 1
BBB 4 200.00
2
1
cce 1 25.00
1

concerned with the highest level of interaction between CLASS variables (NWAY),
the HCPCS*HICN totals ( TYPE =3). If we use the same adjustments as those we
made to our previous program, NWAY option and the DROP statement, our SAS

code will look like this:

| sAs cope |

PROC SUMMARY
DATA =SURFACES NWAY;

CLASS HCPCS HICN;

VAR SERVICES ALLOWED;

OUTPUT OUT =TOTALS3(DROP= TYPE
FREQ )

SUM(SERVICES) = TOTSRVC
SUM(ALLOWED) = TOTALLW;

| END SAS CODE |
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This code creates an output file

“TOTALS3" Data File

(TOTALS3) containing five
records HCPCS HICN TOTSRVC
) TOTALLW
We now have a file with one EO180 AAA 7
record for each HCPCS HICN 5
combination. Remember that .
when you run a PROC 8
SUMMARY. SAS creates a
variable called _FREQ_ that EO180 CcCcC 2
contains a count of the number of 5
records that went into each .
subgroup. Therefore, if we input 0
this file into another PROC 0
SUMMARY with one CLASS £0277 AAA 5
variable (HCPCS), the FREQ 5
variable that is created will .
represent the total number of 0
beneficiaries for each HCPCS. Y
This is reflected in the code
below. We will also add a E0277 bDD ;
RENAME statement to make the _
_FREQ_ variable name more 0
meaningful. 0
| E1399 BBB
|
SAS CODE 200.00
|
|
PROC SUMMARY
DATA =SURFACES NWAY:;
CLASS HCPCS HICN;
VAR SERVICES ALLOWED;
OUTPUT OUT =TOTALS(DROP= TYPE FREQ )
SUM(SERVICES) =TOTSRVC
SUM(ALLOWED) =TOTALLW;
PROC SUMMARY
DATA=TOTALS NWAY;
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CLASS HCPCS;

VAR TOTSRVC TOTALLW;

OUTPUT OUT =NEWTOTS(DROP= TYPE
RENAME = ( FREQ =TOTBENES))
SUM=;

| END SAS CODE |

This code creates a new SAS file (NEWTOTS) which has one record for each HCPCS.
By typing "SUM=;" we have asked SAS to summarize the variables in the VAR
statement and keep the same names on the output file. Therefore "newtots" has a
variable called TOTSRVC and another called TOTALLW. The output is shown
below.

This program will work as long as “NEWTOTS" Data File

your input file is not too large. HCPCS TOTSRVC TOTALLW
SAS will only allow up to 32,767 TOTBENES

combinations to be output from a

PROC SUMMARY. Therefore, E0180 4 100.00

if you have a file with claims for 2

more than 32,767 benes, SAS will E0277 3 21 00.00

not allow you to 1ncludf: the £1399 4 200.00

HICN as a CLASS variable. For 1

files larger than 32,767, it is
better to write your own summary
routine using a SAS DATA step.
To do this, first sort the data with the SAS SORT procedure. The following code will
do the same thing as the two PROC SUMMARY routines above.

| sAs cope |

PROC SORT

DATA =SURFACES
OUT =SRT;

BY HCPCS HICN;

DATA NEWTOTS(KEEP=HCPCS TOTBENES
TOTSRVC
TOTALLW);
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SET SRT;

BY HCPCS HICN;

RETAIN TOTBENES TOTSRVC TOTALLW;

IF FIRST.HCPCS THEN DO;
TOTBENES =0;
TOTSRVC=0;
TOTALLW =0;

END;

IF FIRST.HICN THEN TOTBENES + 1;

TOTSRVC + SERVICES;

TOTALLW + ALLOWED;

IF LAST.HCPCS THEN OUTPUT;

| END sAS CODE |

This program sorts the data in "SURFACES" by HCPCS and HICN and places it in a
new SAS file "srt". For this example, we could have sorted the data and rewritten it
to "surfaces." However, you are usually only going to use this type of program for a
large input file. Therefore, it is a good practice to write the dataset out to a new file
to avoid problems with space allocation. Once the file is sorted, the code in the
DATA step performs the following functions:

1) DATA NEWTOTS(KEEP=HCPCS TOTBENES TOTSRVC TOTALLW);

This line creates a new SAS file called "newtots" and tells SAS that this file should
only contain the 4 variables that are listed in the KEEP statement.

2) SET SRT;
BY HCPCS HICN;

Use the file "srt" as input to this routine. The file is sorted by HCPCS and HICN.
3) RETAIN TOTBENES TOTSRVC TOTALLW;

Causes the values of TOTBENES, TOTSRVC, and TOTALLW to retain their
values from one input record to the next. They are only changed when a specific
SAS statement changes them (when they are assigned a new value). The SAS default
does not retain a value from one record to the next; so, without this statement the
values of these variables would be reset every time that a record was read from

1)

srt

n
.

4) IF FIRST.HCPCS THEN DO;
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TOTBENES =0;
TOTSRVC=0;
TOTALLW=0; END;

When the first occurrence of each HCPCS wvalue is read from "srt," initialize the
variables TOTBENES, TOTSRVC, and TOTALLW to 0. Otherwise, ignore these

Statements.

5) IF FIRST.HICN THEN TOTBENES +1;

When the first occurrence of each HCPCS HICN combination is read from "srt"
add 1 to the variable TOTBENES. Otherwise, ignore this statement.

6) TOTSRVC + SERVICES;

Every time that a record is read from "srt," add the value of SERVICES to the

value currently retained in TOTSRV'C and store this new total value in
TOTSRVC.

7) TOTALLW + ALLOWED;

Every time that a record is read from "srt," add the value of ALLOWED to the

value currently retained in TOTALLW and store this new total value in
TOTALLW.

8) IF LAST.HCPCS THEN OUTPUT;

When the last occurrence of each HCPCS has been read from "srt" and all the other
statements in the DATA step have been processed, output the values of HCPCS,
TOTBENES, TOTSRVC, and TOTALLW to file "newtots". Otherwise, ignore
this statement. This is the only time that anything will be written to "newtots."”

This allows us to input seven records from "srt" and output three records to
“newtots. "
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The output file NEWTOTY)
contains three records and is identical
to the output that was created by
using two PROC SUMMARY

routines.

There are also other procedures in
SAS such as PROC TABULATE and
PROC MEANS that can give you
summary information for a HCPCS.
These procedures are beyond the
scope of this chapter.

"NEWTOTS"” Data File

HCPCS TOTSRVC TOTALLW
TOTBENES

EO180 4 100.00
2
EOQ277 3 100.00
2
E1399 4 200.00
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APPENDIX A

STATISTICS:  An Overview

The purpose of our research, as with most any type of research, is to assess
relationships between and among a set of variables. Research can be classified as one
of three types: experimental, quasi-experimental, or observational.

Experiments are the most controlled type of study and maximize the investigator's
ability to isolate the observed effect of the dependant variables from the distorting
effects of the independent variables. When observational units are assigned randomly
to treatment and control groups, the study is considered to be an experiment.

Quasi-experiment are often more feasible and less expensive than experiments but
offer less control over the study. When observational units are assigned to treatment
groups without randomization, the study is considered to be quasi-experimental.

Observational experiments are the easiest studies to implement but offer the least
potential for drawing definitive conclusions. When all observations are obtained
without either randomization or comparison groups, then the study is considered to
be observational.

In The Office of Inspector General (OIG), we typically encounter observational
studies primarily because we are bound by limited time and budget constraints. We
are interested in determining what relationships play a significant role in various
outcome variables. We use several different types of statistical techniques to
accomplish this.

CLASSIFICATION OF VARIABLES

Variables can be classified a number of ways. These classifications are useful in
determining the method of data analysis we will use. I'm going to describe three
methods of variable classifications: gaped/not gaped, descriptive orientation, and
level of measurement.

DESCRIPTIVE ORIENTATION

In the this section we are going to talk about whether a variable is to describe or be
described by other variables. If a variable under investigation is to be described in
terms of other variables, we call it a response, or dependant variable. If we are using a
variable in conjunction with other variables to describe a given response variable, we
call it a predictor, or independent, variable. Other variables that may affect the

APPENDIX A STATISTICS: An Overview Page 86



relationships between dependant and independent variables but have no intrinsic
value in a particular study are referred to as control or nuisance variables. Also, in
some contexts, these variables are referred to as covariates or confounders. It is
important to note that a variable considered as dependent for evaluating one study
objective may be considered independent for evaluating another study objective.

LEVELS OF MEASUREMENT

The third classification scheme deals with the precision of measurement of the
variable. There are three of these levels. They are: nominal, ordinal, and interval.

NOMINAL

The weakest level of measurement is nominal. At this level the values assumed by a
variable usually indicate different categories. The variable 'sex' or 'gender' is nominal
because we assign the numbers 1 and 0 to denote female and male, respectively, to
distinguish the two categories.

ORDINAL

A somewhat higher level of measurement allows us not only to group into separate
categories but also to order the categories. This level is called ordinal. Social class is
an ordinal variable since an ordering can be made among the different classes. An
ordinal scale possess all the properties of a nominal scale plus ordinality.

INTERVAL

A variable that can not only give ordering but also give a meaningful measure of the
difference between categories is an interval variable. To be interval, a variable must
have a well-accepted physical unit of measurement. Height, weight, blood pressure

are all examples of interval variables while subjective measures like personality type,
social class, and stress levels do not. Rates of occurrence are also

An interval variable that has a scale with a true zero is occasionally designated as a
ratio, or ratio-scale, variable. An example of a ratio scale variable is the height of a
person. Temperature measured in degrees Celsius, an interval scale while
measurement of temperature in kelvin is referred to as absolute zero, and so is a ratio
variable. An example of a ratio variable common in the health industry is the
concentration of a substance in the blood (i.e., cholesterol). Rates of occurrence are
also ratio level data, for example, HMO disenrollment rates or hospital admissions.
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BASIC STATISTICS: AN INTRODUCTION

Statistics is one of the four mathematical sciences and concerns the methods and
procedures for collecting, classifying, summarizing, and analyzing data. The primary
goal of most statistical analysis is to make statistical inferences, that is, draw valid
conclusions about a population based on information contained in a sample of that
population. Therefore, the applications of statistics can be divided into two broad
areas; descriptive and inferential statistics.

. Descriptive statistics - utilizes numerical and graphical methods to look for
patterns,
to summarize, and to present information about a set of data.

. Inferential statistics - utilizes sample data to make estimates, decisions,
predictions, and other generalizations about a larger set of data sometimes
referred to as a population of elements.

DESCRIPTIVE STATISTICS

In this area of statistics there are several tools available to assist us in describing a data
set. Graphs are example of descriptive statistics. Some graphs that are frequently
used are Stem and Leaf plots, Histograms, Box and Whisker plots, and Circle Graphs,
or Pie Charts. Because most computer programs construct these charts automatically,
it is beyond the scope of this introduction to describe the steps to construct each one.
It is important that the reader understand that the pictorial methods of describing a
data set can be very useful in determining the distribution of your data set (i.e.,
normal distribution, skewed distribution) and also help in determining what method
of data analysis is useful.

Another commonly used tool in descriptive statistics are numerical measures of
Central Tendency. When we talk about a data set, we are talking about a sample or a
population. Since inference is our ultimate goal, we want to use numerical descriptive
values from the sample to make inferences about the corresponding population.
There are lots of numerical methods available to describe data sets and most measure
one of two data characteristics:

1. The central tendency of the set of measurements, or the tendency of
the data to center or cluster around a particular value.
2. The variability of the set of measurements, or the spread of the data.
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NUMERICAL MEASURES OF CENTRAL TENDENCY

In this section I'm going to concentrate on measures of central tendency. The most
popular and best understood measure of central tendency for a quantitative data set is
the arithmetic mean or simply the mean.

. The mean of a set of quantitative data is equal to the sum of values divided by
the number of values contained in the data set.

In everyday terms, the mean is the average value of the data set.

The median is another important measure of central tendency. The median is of most
value in describing large data sets and in working with nonparametric data sets. That
is data sets that do not satisfy the assumptions that the #- and F- tests are based on.

. The median is the middle number when the measurements in a data set are
arranged in ascending (or descending) order. If 7 is odd, the median is the
middle number. If 7 is even, the median is the mean of the middle two
numbers.

In some situations the median is a better measure of central tendency than the mean
because the median is less sensitive to extremely large or small measurements. The
median is useful to compare to the mean to get a rough idea of the shape of your data
set. The following is a quick Rule of Thumb when comparing the median and the
mean.

. If the median is less than the mean, the data set is skewed to the right.
. If the median is greater than the mean, the data set is skewed to the left.
. If the median is equal to the mean, the data set is symmetrical.

A third measure of central tendency is the mode. The mode is often used with large
data sets to locate the region where most of the data is concentrated. The mode is
used primary when describing very large data sets.

. The mode is the measurement that occurs most frequently in the data set.
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NUMERICAL MEASURES OF VARIABILITY

Measures of central tendency only give us a small part of the information that we
need when want to describe a quantitative data set. The description is incomplete
without a measure of variability, or spread, of the data set. Two data sets can have the
same mean, and yet still be very different because one may be more spread out than
the other. Perhaps the simplest measure of the variability of a quantitative data set is
the range.

. The range of a data set is equal to the largest measurement minus the smallest
measurement.

The range is easy to compute and easy to understand but it is pretty insensitive to
actual variation in a data set when the data set is large. This is easy to understand
because two data sets can have the same range but be extremely different with respect
to the actual variation.

The two measures of variability most often considered are the sample variance and
the sample standard deviation.

. The sample variance is equal to the sum of the squared distances of each value
of a variable from the mean divided by (n - 1). In symbols, we use s° to
represent the sample variance.

The drawback to using s” is that it is in squared units of the variable x. To have a
measure of dispersion that is expressed in the same units as x, we simply take the
square root of s” and call it the sample standard deviation.

. The sample standard deviation, s, is defined as the positive square root of the
sample variance, s’.

When we compare the variability of two samples selected from a population, the
sample with the larger standard deviation is the more variable of the two.
Unfortunately, none of us have the time to pull two samples each time to make
variability comparisons. There are two rules that we can use to act as an aid to the
interpretation of a standard deviation. The first applies to any set of data and is
derived from a theorem proven by Russian Mathematician, Chebyshev.
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CHEBYSHEV'S RULE

Chebyshev's Rule applies to any sample of measurements, regardless of the shape of
the frequency distribution.

1.

It is possible that very few measurements will fall within 1 standard of
the mean.

At least 3/4 of the measurements will fall within 2 standard deviations
of the mean.

At least 8/9 of the measurements will fall within 3 standard deviations
of the mean.

Generally, at least 1 - 1/k”of the measurements will fall within k
standard deviations of the mean for any number, k, greater than 1.

The second rule which applies only to mound-shaped distributions of data, is based
on empirical evidence that has accumulated over time. It is appropriately called The
Empirical Rule.

EMPIRICAL RULE

The Empirical Rule is a rule of thumb that applies to samples with frequency
distributions that are mound-shaped.

1.

Approximately 68% of the measurements will fall within 1 standard
deviation of the mean.

Approximately 95% of the measurements will fall within 2 standard
deviations of the mean.

Essentially all of the elements will fall within 3 standard deviations of
the mean.

I've given you several ways that we can use when we are interested in describing a
quantitative set of data. It is important that the reader understand that the area of
descriptive statistics is broader and deals with several different types of distributions
not presented here (for example, binomial, logistic, and Chi-Square distributions).
That information, although very important, is beyond the scope of this short
introduction and the reader is encouraged to review random variables and their
distributions for clarification of those issues.
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INFERENTIAL STATISTICS

As we discussed in the beginning, the primary goal of most statistical analysis is to
draw valid conclusions about a population based on information gathered from a
sample of that population. There are two general categories of statistical inference,
they are; estimation and hypothesis testing. Each one of these categories has a
different purpose. Estimation is concerned with estimating the specific value of an
unknown population parameter. Hypothesis testing is concerned with making a
decision about a hypothesized value of an unknown population parameter. Let's talk
about these two in a little more detail.

ESTIMATION

In estimation we want to estimate an unknown parameter using a random variable.
This point estimator is in the form of a formula, or rule (i.e., mean, or standard
deviation).

The usual procedure is to select a random sample from the population of interest,
calculate the point estimate (i.e., the mean), and then associate a measure of variability
with it, which usually takes the form of a confidence interval.

A confidence interval (CI) consists of two boundary points between which we
have a certain specified level of confidence that the actual population
parameter lies.

For example, a 95% confidence interval for a parameter would consist of upper and
lower limits determined, so that in repeated sets of samples of the same size, 95% of
all the intervals would be expected to contain the true population parameter.

HYPOTHESIS TESTING

We use our the estimation process to develop what we think is a likely set of values
for the parameters of interest. Next, we use the hypothesis testing process to test
whether our estimated value for the parameter is different enough from some
hypothesized value (usually referred to as the null hypothesis) to conclude that the
hypothesized value is not likely to be true.

The general procedure used in testing a statistical null hypothesis is basically the same
regardless of the parameter being considered. The procedure consists of the following
seven steps:
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1. Check the assumptions of the properties of the underlying variables
being tested to insure that the testing procedure is appropriate.

2. State the null hypothesis Ho, and the alternative hypothesis, Ha.

3. Specify the level of significance, the alpha level.

4. Specify the test statistic to be used, #-, F-, Chi-square, and its distribution
under Ho.

5. Form the decision rule for rejecting and not rejecting the null
hypothesis.

6. Compute the value of the test statistic from the observed data.

7. Draw your conclusions concerning the rejection or nonrejection of the
null hypothesis.

There are some other points of interest when you are involved in hypothesis testing is
what is called a P-value, and Type I and Type Il errors. I'll briefly discuss them for
you now. The P-value is a value that we can compute that quantifies exactly how
unlikely the observed results would be if Ho were true. Another way to describe the P-
value is as follows:

. The P-value gives the probability of obtaining a value of the test statistic at
least as unfavorable to Ho as the observed value.

It is important to note that you can use P-values can be used to draw conclusions
about a test. If you decide to use P-values as the basis for accepting or rejecting the
null hypothesis, the following guidelines are recommended:

1. If P is small (less than .05), reject Ho.
2. If P is large (greater than .5), do not reject Ho.

3. If .05 < P < .5, the significance is borderline; that is we reject Ho for
an alpha equal to .1 but not for an alpha equal to .01.

Note: If we actually do specify alpha a priori, we reject Ho when P is less than alpha.

There are actually two types of error that can be made when performing a statistical
test: A Type Il error occurs if we fail to reject Ho when Ho is actually false. We
denote the probability of a Type Il error by beta and call (1 - beta) the power of the
test.
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For a fixed sample size, alpha and beta for a given test are inversely related, which
means that lowering one has the effect of raising the other. It is important to note
that in general, the power of any statistical test can be raised by increasing the sample
size.

In this section, we have discussed the overall concepts of research and the different
ways of classifying our variables. We have talked about the difference between
descriptive statistics and inferential statistics and how to apply those techniques to a
data set of interest. These are only guidelines to help give you a deeper understanding
of why we are doing what we're doing in the quantitative analysis arena.

APPENDIX A STATISTICS: An Overview Page 94



APPENDIX B

USING &AS WINDOWS ASSIST

An Ixample: How o Chlculale Conlidence Intervals
With SAS Assist

Creating confidence intervals is even easier with SAS Assist software - simply select
from the menu options. The following screens show what you would see when using
SAS assist.

Select Data Analysis after executing the Assist module.
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Select Confidence Intervals
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PROGRAM CREATED BY SAS ASSIST

The following is the program that SAS assist created. Note this program does not utilize
the new Proc Means options.

OPTIONS LINESIZE =80 PAGESIZE - 63 DATE NUMBER PAGEND-1;
TITLE;
FOOTNOTE;
PROC MEANS NOPRINT DATA-DDRIVE.SAMPLE94;
VAR PAIDAMT;
OUTPUT OUT =SASAST1
N =N1
MEAN - MEAN1
STD =STD1;
RUN;
%LET ASERR - &SYSERR;
DATA SASASTZ;
SET SASASTT;
NAMELIST - "PAIDAMT";
ARRAY NUM {1} N1;
ARRAY AVG { 1} MEANT;
ARRAY STDV { 1} STDT;
HALFALF = 1-((1-.95)] 2);

DOI=1T0OT;
LEVEL = 95;
DF = NUM{1}-1;
IF{DF < 0) THENDF = .;
MEAN = AVG{1};
EST = TINV(HALFALF, DF ) * STDV{ 1} /| SORT(NUM{ 1} );
LOWERCL = AVG{ | } - EST;
UPPERCL = AVG{ 1} + EST;
VARIABLE = SCAN{ NAMELIST ,I,"");
OUTPUT;
END;
RUN;
PROC PRINT DATA=SASAST2 NOOBS;
VAR VARIABLE MEAN DF LEVEL LOWERCL UPPERCL;
RUN;
PROC DATASETS;
DELETE SASAST1 SASAST2;
RUN;
auIT;
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GLOSSARY

STATISTICAL TERMS FOR REFERENCE,

Adjusted R? - An R? (R-squared) adjusted to give a truer (smaller) estimate of how much the
independent variable in a regression analysis explain the dependent variable. The adjustment
is made by taking into a - count the number of independent variables. The adjusted R? is a
measure of strength of association. Also called "epsilon-squared."

Alpha Error - An error made by rejecting a true null hypothesis (such as claiming that a
relationship exists when it does not). Also called Type I Error.

Alpha Level - (a) The chance a researcher is willing to take of committing an alpha error or
Type I Error, that is, of rejecting a null hypothesis that is true. (b) The probability that a
TypeIError (wrongly rejecting the null hypothesis) has been committed. The smaller the
alpha level, the more significant the finding because the smaller the chance that the finding is
due to chance alone. Thus an alpha level of .01 is a more difficult criterion to satisfy than a
level of .05. Also called level of (statistical) significance.

Alternative Hypothesis - In hypothesis testing, any hypothesis alternative to the one being
tested, usually the opposite of the null hypothesis. Also called the research hypothesis.
Rejecting the null hypothesis shows that the alternative (or research) hypothesis may be true.
Symbolized: H, or H,.

Analysis of Variance (ANOVA) - A test of the statistical significance of the differences
among the mean scores of two or more groups on one or more variables or factors. It is an
extension of the ¢ test, which can only handle two groups, to a larger number of groups.
More specifically, it is used to for assessing the statistical significance of the relationship
between categorical independent variables and a continuous dependent variable. The
procedure in ANOVA involves computing a ratio (F ratio) of the variance within the groups
(error variance) to the variance between the groups (explained variance).

Association, Statistical - (a) A relationship between two or more variables that can be
described statlstlcally (b) Any of several statistical techniques (such as correlations and
regression analysis) that can be used to describe the degree to which differences in one variable
are accompanied by (associated with) corresponding differences in another variable.

Association, Test of - Another term for test statistic. Not to be confused with a measure of
association, which indicates the size of the relation between two variables. By contrast, a rest
of association gives the probability that an association of a given size could have occurred by
chance, that is, whether it is statistically significant.

Bell-Shaped Curve - A symmetrical curve, usually plotting a continuous frequency
distribution, such as a normal distribution, which looks like a cross section of a bell. The
Student's ¢ distribution is also bell-shaped, although it is rarely referred to that way.

Best Linear Unbiased Estimator - A regression line computed using the least squares
criterion when none of the assumptions are violated. Abbreviated: BLUE.

Beta Coefficient - A regression coefficient for a sample expressed in standard deviation units
(i-e., z-scores). Specifically, the beta coefficient indicates the difference in a dependent a
dependent variable associated with an increase (or decrease) of one standard deviation in an
independent variable -- when controlling for the effects of other independent variables. Also
called standardized regression coefficient and beta weight. Note: A regression coefficient
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expressed in nonstandardized units is usually symbolized by b. Usage is confusing because
beta is also used to symbolize the population parameter of b.

Beta Error - An error made by accepting or retaining a false null hypothesis -- more precisely,
by failing to reject a false null hypothesis. This might involve, for example, claiming that a
relationship does not exist when it in fact does. Also called Type II Error. Compare alpha
error.

Bias - (a) Anything that produces systematic error in a research finding. More formally, bias
is the difference between the expected value of a sample statistic and the population parameter
the statistic estimates. (b) Also, the effects of any factor that the researcher did not expect to
have an influence on the dependent variable. Compare random error.

Binomial Distribution - A probability distribution for a dichotomous or two-value variable
(binomial = "two-names"), such as success/failure, profit/loss, or in/out. Also called
"Bernoulli distribution."

Categorical Variable - A variable that distinguishes among subjects by putting them into a
limited number of categomes 1ndlcat1ng type or kind, as sex does by categorizing people into
male or female. Also called "discrete” or "nominal" variable. Compare continuous variable.

Central Limit Theorem - A statistical proposition to the effect that, the larger a sample size,
the more closely the sampling distribution of the mean will approach a normal distribution.
This is true even if the population from which the sample is drawn is not normally
distributed. A sample size of 30 or more will usually result in a sampling distribution of the
mean that is very close to a normal distribution. The central limit theorem explains why
sampling error is smaller with a large sample than it is with a small sample.

Central Tendency, Measure of - Any of several statistical summaries of data designed to find
a single number that best represents several numbers. Examples include the mean, the mode,
and the median.

Chi-Square Distribution - A family of theoretical probability distributions, each of which
has a different degree of freedom. The chi-square test is base(f] on it.

Chi-Square Test - A test statistic, that is, one used to assess the statistical significance of a
finding.

Coefficient - (a) A number used as a measure of a property or characteristic. (b) In an
equation, a number by which a variable is multiplied.

Cohort - A group of individuals having a statistical factor (usually age) in common. Compare
a social category. For example, all persons born in 1996 form a cohort.

Confidence Interval - A range of values of a sample statistic that is likely (at a given level of
probability, called a confidence level) to contain a population parameter. The interval that
will include the population parameter a certain percentage (confidence level) of the time. The
wider the confidence interval, the higher the confidence level.

Confidence Level - A desired percentage of the scores (usually 95%) that will fall within a
certain range of confidence limits. It is calculated by subtracting the alpha level from 1 and
multiplying the result times 100; for example, 100 x (1 - .05) = 95%.

Confidence Limits - The upper and lower values of a confidence interval, that is, the values
defining the range of a confidence interval.

Correlation Coefficient - A number showing the degree to which two variables are related.
Correlation coefficients range from -1.0 to +1.0.
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Covariance - A measure of the joint or (co-) variance of two or more variables.

Covariation - (a) A state that exists when two things -- such as the price and the sales of a
commodity -- vary together.

Critical Region - The area in a sampling distribution representing values that are "critical" to
a particular study. They are critical because when a sample statistic falls in that region, the
researcher can reject the null hypothesis.

Deduction - (a) A conclusion that follows logically from known (or assumed) principles, that
is, that uses deductive methods. (b) The process of reasoning that moves from general
prmmples to conclusions about particular instances.

Degrees of Freedom - Usually abbreviated "df." The number of values free to vary when
computing a statistic. This number is necessary to interpret a chi-square statistic, an F ratio,
and a 7 score.

Denominator - Another term for the divisor; in division, the part of the fraction that is
below the line.

Dependent Variable - (a) The presumed effect in a study; so called because it "depends" on
another variable. (b) The variable whose values are predicted by the independent variable,
whether or not caused by it.

Descriptive Statistics - Procedures for summarizing, organizing, graphing, and, in general,
describing quantitative information. Often contrasted with inferential statistics, which is used
to make inferences about a population based on information about a sample drawn from that
population.

Determination, Coefficient of - A statistic that indicates how much of the variance in one

variable is determined or explained by one or more other variables; more strictly, how much
the variance in one is associated with variance in the others. It is calculated by squaring the
correlation coefficient. Thus it is abbreviated 72 in bivariate analyzes and R2 in multivariate
analyzes. Also called "index of determination.” For example, one might find a statement like
the following in a research report: "Education level attained explains 22% of adult
occupational status (2 =,.22)."

Dichotomous Variable - A categorical variable that can place subjects into only two groups,
such as male/female, alive/dead, or pass/fail.

Difference of Proportions - A method for comparing proportions for dichotomous variables.
One proportion is subtracted from the other. The result ranges from -1.0 to + 1.0, with zero
indicating that the two variables have identical conditional probabilities on a dependent
variable.

Discrete Variable - Commonly, another term for categorical (or nominal) variable. Compare
continuous variable.

Dispersion, Measure of - A statistic showing the amount of variation or spread in the scores
for, or values of, a variable. When the dispersion is large, the scores or values are widely
scattered; when it is small, they are tightly clustered. The two most commonly used measures
of dispersion are the variance and the standard deviation.

Dummy Variable - A dichotomous variable, usually coded 1 to indicate the presence of an
attribute and O to indicate its absence. Example: 1 = female; 0 = not female. This coding
facilitates the use of interval-level statistical techniques, which would be hard to interpret if
the variable were coded otherwise, such as female = 2, male = 1

Efficiency - (a) In experimental design, said of a procedure that uses fewer resources for the
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same results or that gets more results using the same resources. (b) In statistics, a property of
an estimate of a population parameter; the better the estimate, the greater the eff1c1ency
Efficiency is a measure of the variance of an estimate's samphng distribution; the smaller the
variance, the better the estimator.

Endogenous Variable - A variable that is an inherent part of the system being studied and
that is determined from within the system. In other words, a variable that is caused by other
variables in a causal system. Generally contrasted with exogenous variable.

Error - The difference between an observed score and a predicted or estimated score.
Symbolized as e or E.

Error Sum of Squares - In analysis of variance or regression, the within-group sum of
squares, that is, the part not explainable by the treatment effects or regression model.

Error Term - The part of an equation indicating what is unexplained by the independent
variables.

Estimation - Using a sample statistic to determine the probable value of a population
parameter.

Exogenous Variable - A variable entering from and determined from outside the system
being studied. A causal system says nothing about its exogenous variables.

Expected Value - (a) The mean value of a variable in repeated samplings or trials. (b) The
mean of the sampling distribution of a statistic.

External Validity - The extent to which the findings of a study of a sample may be
generalized to a population.

Extrapolation - Inferring values by projecting trends beyond known evidence.
F - (a) Uppercase F, the statistic that is computed when conducting an analysis of variance.

F Test - A test of the results of a statistical analysis, perhaps most closely associated with, but
by no means limited to, analysis of variance (ANOVA). The F test yields an F ratio or F
statistic. This is a ratio of the variance between groups (explained variance) to the variance
within groups (unexplained variance). To tell Wiether the F ratio is statistically significant,
you have to consult an F distribution table.

Goodness-of-Fit Test - The chi-square test applied to a single categorical variable to see if the
distribution among categories matches (fits) a theoretical expectation. The bigger the chi-
square statistic, the poorer the fit; the smaller, the better.

H, - The symbol for the null hypothesis.
H, - A symbol for the alternative or research hypothesis.
Homogeneous - Generally, the same or similar.

Induction - Using statistical methods to form generalizations by finding similarities among a
large number of cases. The generalizations derived in this way are probabilistic. For example,
if 90% of the members of the U.S. Congress were lawyers, the chances of any individual
member of the Congress being a lawyer would be 9 out of 10.

Kurtosis - The shape (degree of peakedness) of a curve that is a graph representation of a
(unimodal) frequency distribution. Kurtosis usually indicates the extent to which a
distribution departs from the bell-shaped or normal curve by being either pointier
(leptokurtosis) or flatter (platykurtosis).
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Lagged Dependent Variable - Said of a dependent variable whose value at a particular time is
to some degree dependent on its value at a previous time.

Level of Significance - More fully, the level of statistical significance. The probability that a
result would be produced by chance (sampling error, random error) alone. The level of
significance indicates the risk or probability of committing an error (T'ype I Error in
hypothesis testing). The level ofpsignificance is stated as a probability, often abbreviated p,
followed by a number, for example, p <.05 or p > .01. The smaller the number, the smaller
the chance of Type I Error and the more statistically significant the finding.

Logistic Regression Analysis - A kind of regression analysis used when the dependent
variable is dichotomous and scored 0, 1. It is generally used for predicting whether something
will happen or not, such as graduation, business failure, heart disease -- anything that can be
expressed as Event/Nonevent. Independent variables may be categorical or continuous in
logistic regression analysis. It is based on transforming data by taking their natural logarithms
so as to reduce nonlinearity. Rather than using OLS methods, logistic regression estimates
parameters using maximum likelihood estimation.

Mean - The average. To get the mean, you add up the values for each case and divide the total
by the number of cases.

Median - The middle score in a set of ordered scores. When the number of scores is even,
there is no single middle score; in that case, the median is found by taking an average of the
two middle scores.

Mode - The most common (most frequent) score in a set of scores.

Multicollinearity - In multiple regression analysis, multicollinearity exists when two or more
independent variables are highly correlated; this makes it difficult if not impossible to
determine their separate effects on the dependent variable.

Multiple Linear Regression - A method of regression analysis that uses more than one
predictor variable (or independent variable) to predict a single dependent variable. The
coefficient for any particular predictor variable is an estimate of the effect of that variable
while holding constant the effects of the other independent variables.

Multivariate Analysis - Any of several methods for examining multiple variables at the same
time.

N - Number. Usage varies; among the most common meanings of the uppercase N are (a)
number of subjects or cases in a particular study, (b) number of individuals in a population, ©
number of variables in a study.

n - Number. Usage varies; among the most common meanings of the lowercase 7 are (a)n
number in a sample, as opposed to in a population, (b) number of cases in a subgroup. For
example, consider the following from a research report: "We interviewed a random sample of
college graduates (N = 520) to get their opinions on several issues; males were 45% (n = 234)
of the sample." This means that a total of 520 graduates were interviewed; 234 of them were
in the male subgroup.

Nested Variables - Said of variables located inside other variables - such as city, state, and
national murder rates.

Nominal Scale (or Level of Measurement) - A scale of measurement in which numbers stand
for names but have no order or value. For example, coding female = 1 and male = 2 would
be a nominal scale; females do not come first; two females do not add up to a male, and so on.
The numbers are merely labels.
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Nominal Variable - Another term for a categorical (or a discrete or a qualitative) variable.
See nominal scale.

Normal Distribution - A purely theoretical continuous probability distribution in which the
horizontal axis represents all possible values of a variable and the vertical axis represents the
probability of those values occurring. The scores on the variable (often expressed as z-scores)
are clustered around the mean in a symmetrical, unimodal pattern known as the bell-shaped
curve or normal curve. In a normal distribution, the mean, median, and mode are all the
same. There are many different normal distributions, one for every possible combination of
mean and standard deviation. Also sometimes called the "Gaussian distribution.” Because the
sampling distribution of a statistic tends to be a normal distribution, the normal distribution is
widely used in statistical inference. For small samples, the Student's ¢ distribution (which is
also "bell-shaped" but not "normal") is used.

Null Hypothesis - (H;) The hypothesis that two or more variables are 7ot related or that two
or more statistics (e.g., means for two different groups) are not the same. In accumulating
evidence that the null hypothe31s is false, the researcher indirectly demonstrates that the
variables are related or that the statistics are different. The null hypothesis is the core idea in
hypothesis testing.

Numerator - In a fraction, the number above the line; the number into which the
denominator is divided.

Odds Ratio - A ratio of one odds to another. The odds ratio is a measure of association, but,
unlike other measures of association, "1.0" means that there is no relationship between the
variables. The size of any relationship is measured by the difference (in either direction) from
1.0. An odds ratio less than 1.0 indicates an inverse or negative relation; an odds ratio greater
than 1.0 indicates a direct or positive relation. Also called "cross-product ratio.”

One-Tailed Test of Significance - A hypothesis test stated so that the chances of making a
Type I (or alpha) Error are located entirely in one tail of a probability distribution.

Ordinal Scale (or Level of Measurement) - A scale of measurement that ranks subjects (puts
them in an order) on some variable. The differences between the ranks need not be equal (as
they are in an interval scale). Team standings or scores on an attitude scale (highly concerned,
very concerned, concerned, and so on) are examples.

Ordinary Least Squares (OLS) - A statistical method of determining a regression equation.
That is, the equation that best represents the relationship among the variables, given the
criteria of minimizing the sum of squares of the residual (error term) between "the predicted
value and the observed value.

Outlier - A subject or other unit of analysis that has extreme values on a variable. Outliers
are important because they can distort the interpretation of data or make misleading a statistic
that summarizes values (such as a mean).

Oversampling - A procedure of stratified sampling in which the researcher selects a
disproportionately large number of subjects from a particular group (stratum). Most often,
researchers oversample in a stratum that has a large variance or in a stratum that would yield
too few subjects if a simple random sample were used.

P - Probability value, or p value. Usually found in an expression such as p .05. This
expression means: "The probability (p) that this result could have been produced by chance
(or random error) is less than (<) five percent (.05)." Thus, the smaller the number, the
greater the likelihood that the result expressed was not merely due to chance. For example, p
< .001 means that the odds are a thousand to one (one tenth of 1%) against the result being a
fluke. What is being reported (.05, .002, and so on) is an alpha level or significance level. The
p value is the actual pro%ability associated with an obtaineé3 statistical result; this is then
compared with the alpha level to see whether that value is (statistically) significant.
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Point Estimate - An estimate made by computing a statistic that describes a sample; this is
then used to estimate a population parameter.

Poisson Distribution - A probability distribution used when the number (N) of cases is very
large and the probability (p) is very small.

Population - A group of persons (or institutions, events, or other subjects of study) that one
wishes to describe or about which one wishes to generalize. To generalize about a population,
one often studies a sample that is meant to be representative of the population. Also called

n M n

universe.

Population Parameter - A characteristic of a population described by a statistic, such as a
mean or a correlation. Population parameters are usually symbolized by Greek letters; the
Roman (English) alphabet is often used for sample statistics. Consistency is not perfect here,
however, as Greek letters are sometimes used for both statistics and parameters.

Power of a Test - Broadly, the ability of a technique, such as a statistical test, to detect
relationships. Specifically, the probability of rejecting a null hypothesis when it is false - and
therefore should be rejected. The power of a test is calculated by subtracting the probability
of a Type Il Error from 1.0. The maximum total power a test can have is 1.0; the minimum is
zero. Also called "statistical power."

Probability Level - The p value below which the null hypothesis is rejected; this value or level
is the chance of making a Type I (or alpha) Error.

Probit Analysis - A technique used in regression analysis when the dependent variable is a
dummy (or dichotomous) variable. It assumes a cumulative normal distribution in contrast to
the logistic distribution assumed in Logit analysis.

Proportional Stratified Random Sample - A stratified random sample in which the
proportion of subjects in each category (stratum) is the same as in the population.
p Value - Short for probability value.

Qualitative - (a) When referring to variables, "qualitative" is another term for categorical or
nominal.

Quantitative - Said of variables or research that can be handled numerically.

Quartiles - Divisions of the total cases or observations in a study into four groups of equal
size (quarters).

Random Sampling - Selecting a group of subjects (a sample) for study from a larger group
(population) so that each individual (or other unit of analysis) is chosen entirely by chance.

Random Variation - Differences in a variable that are due to chance rather than to one of the
other variables being studied.

Rank Order Scale - Another term for an ordinal scale, that is, one that gives the relative
position of a score in a series of scores.

Regression - Any of several statistical techniques concerned with predicting some variables by
knowing others.

Regression Coefficient - A number indicating the values of a dependent variable associated
with the values of an independent variable or variables. A regression coefficient is part of a

regression equation.

Reliability - The consistency or stability of a measure or test from one use to the next.

GLOSSARY STATISTICAL TERMS Page 104



Robust - Said of a statistic that remains useful even when one (or more) of its assumptions is
violated. For example, the F ratio is generally robust to violations of the assumption that
treatment groups have equal variances.

Sample - A group of subjects selected from a larger group in the hope that studying this
smaller group (the sample) will reveal important things about the larger group (the
population).

Sampling Error - The inaccuracies in inferences about a population that come about because
researchers have taken a sample rather than studied the entire population. In other words,
sampling error is the difference between a population parameter and a sample statistic used to
estimate that parameter. Sampling error is one kind of random error.

Sampling Fraction - The size of a sample as a percentage of the population from which it was
drawn; the ratio of sample size to population size.

Sampling Frame - A list or other record of the population from which the sampling units are
drawn.

SAS - Statistical Analysis System. A widely used statistical package for data analysis in the
social and behavioral sciences.

Significance - The degree to which a research finding is meaningful or important.

Significance Level - The probability of making a Type I Error. The lower the probability,
the higher the statistical significance.

Significance Testing - Using statistical tests (such as chi-square, # test, or F test) to determine
how likely it is that observed characteristics of samples have occurred by chance alone in the
populations from which the samples were selected. If the observed characteristics in the
samples are unlikely to be due to chance alone, the characteristics are deemed statistically
significant.

Simple Regression - A form of regression analysis in which the values of a dependent variable
are attributed to (are a function of) a single independent variable.

Skewed Distribution - A distribution of scores or measures that, when plotted on a graph,
produce a nonsymmetrical curve. In a unimodal skewed frequency distribution, the mode,
mean, and median are different. When the skewness of a group of values is zero, their
distribution is symmetrical.

Specification Error - A mistake committed when deciding upon (specifying) the causal model
in a regression analysis. The three most common such errors are (1) leaving an important
variable out of the causal model (2) including an irrelevant variable and (3) using the wrong
functional form of a variable (i.e. using X when X’ is needed).

Standard Deviation - A statistic that shows the spread or dispersion of scores in a distribution
of scores; in other words, a measure of dispersion. The more widely the scores are spread out,
the larger the standard deviation. The standard deviation is calculated by taking the square
root of the variance. It is symbolized as SD or s or as a lowercase sigma.

Standard Error - Often short for standard error of the mean or standard error of estimate.
The smaller the standard error, the better the sample statistic is as an estimate of the
population parameter -- at least under most conditions. The standard error is a measure of
sampling error; it refers to error in our estimates due to random fluctuations in our samples.
The standard error is the standard deviation of the sampling distribution of a statistic.

Standard Error of the Mean - A statistic indicating how greatly the mean score of a single
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sample is likely to differ from the mean score of a population. It is the standard deviation of a
sampling distribution of the means.

Standardized Regression Coefficient - A statistic that provides a way to compare the relative
importance of different variables in a multiple regression analysis. It measures the impact of a
one standard deviation change in a regression coefficient.

Standard Normal Deviate - Another term for standard score or z-score.

Standard Score - A measure of relative standing in a group arrived at by transforming raw
scores in a way that allows one to compare raw scores from different distributions. The
common standard score is the z-score.

Statistic - A number that describes such characteristic of a variable or of a group of data --
such as a mean or a correlation coefficient.

Statistical Inference - Using probability and information about a sample to draw conclusions
("inferences") about a population or about how likely it is that a result could have been
obtained by chance.

Statistical Power - A gauge of the sensitivity of a statistical test, that is, its ability to detect
effects of a specific size, given the particular variances and sample sizes of the study.

Statistical Significance - Said of a value or measure of a variable when it is ("significantly")
larger or smaller than would be expected by chance alone.

. It is important to remember that statistical significance does not necessarily imply
substantive or practical significance. A large sample size very often leads to results
that are statistically significant, even when they might be otherwise quite
inconsequential.

Stratified Random Sampling - Random or probability samples drawn from particular
categories (or "strata") of the population being studied.

Stratum - A subgroup of population, based on a selected criteria (i.e. male, female).

Student's ¢ Distributions - A family of theoretical probability distributions used in
hypothesis testing. The 7 distribution is used for interpreting data gathered on small samples
when the population variance is unknown.

Sum of Squared Errors - In a regression analysis, what you are trying to minimize when you
use the ordinary least-squares criterion. This is calculated by summing the squares of the
difference between the observed dependent variable values and those predicted by the
estimated regression equation.

Sum of Squares - The result of adding together the squares of deviation scores.
T-Score - (uppercase T) A way of expressing deviation from a mean.

¢ Statistic - The number that is tested in a # test, that is, the number that is compared with the
critical region. It is used for small sample inference.

t Test - A test of the statistical significance of the results of a comparison between two group
means, such as the average score on a manual dexterity test of those who have and have not
been given a caffeine drink.

Two-Tailed Test of Significance - A statistical test in which the critical region (region of
rejection of the null hypothesis) is divided into two areas at the tails of the sampling
distribution. This test 1s used when we are concerned whether the mean of one group is
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higher or lower than the other.
Type I Error - An error made by wrongly rejecting a true null hypothesis.

Type II Error - An error made by wrongly accepting (or retaining or failing to reject) a false
null hypothesis.

Unbiased Estimate - A sample statistic that is free from any systematic bias leading it to over-
or underestimate the corresponding population parameter.

Universe - Another term for population.

Validity - A term to describe a measurement instrument or test that measures what it is
supposed to measure; the extent to which a measure is free of systematic error.

Variability - The spread or dispersion of scores in a group of scores; the tendency of each
score to be unlike the others.

Variance - A measure of the spread of scores in a distribution of scores, that is, a measure of
dispersion. It is calculated by summing the square of each observed value minus the mean and
dividing this sum by N-1 (sample data).

Weighted Average (or Mean) - A procedure for combining the means of two or more groups
of different sizes; 1t takes the sizes of the groups into account when computing the overall or
grand mean.

Weighted Data - (a) Any information given different weights in calculations, as when the
final examination counts twice as much as (is weighted double) the midterm. (b) Data whose
values have been adjusted to reflect differences in the number of population units that each
case represents.

z-Score - (lowercase z) - The most commonly used standard score. In z-score notation, the
mean is O and a standard deviation is 1. Thus a z-score of 1.25 is one and one-quarter standard
deviations above the mean. It is used when the underlying population has a normal
distribution of the measured variable.
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